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Abstract

We consider an affine control system whose vector fields span a third-order nilpotent
Lie algebra. We show that the reachable set at time T using measurable controls
is equivalent to the reachable set at time T using piecewise-constant controls with
no more than four switches. The bound on the number of switches is uniform over
any final time T . As a corollary, we derive a new sufficient condition for stability
of nonlinear switched systems under arbitrary switching. This provides a partial
solution to an open problem posed in [1].
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1 INTRODUCTION

Consider the control system

ẋ = f(x) + ug(x), u ∈ U , (1)

where f , g : Rn → Rn are two analytic vector fields, and U is the set of
measurable functions u(·) : R → [0, 1]. Given an initial condition x(0) = x0,
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and an admissible control u, we use x(t; u, x0) to denote the solution of (1)
at time t.

For a subset of admissible controls V ⊆ U , let

R(t;V ,x0) := {x(t; v, x0) : v ∈ V},

that is, the reachable set at time t ≥ 0 using controls from V . An important
problem in the analysis of control systems can be stated as follows. Find
conditions guaranteeing that

R(T ;U ,x0) = R(T ;V ,x0),

where V ⊂ U is some subset of “nice” controls. In other words, any point
that can be reached at time T using a control u ∈ U can also be reached,
at the same time, using a “nice” control v ∈ V . This property, sometimes
referred to as reachability with nice controls, is important for both theoretical
and practical reasons.

The main result of this paper is that a certain Lie-algebraic condition implies

R(t;U ,x0) = R(t;PC4,x0), ∀t ≥ 0, ∀x0 ∈ Rn, (2)

where PCj ⊂ U is the set of piecewise constant controls with no more than j
discontinuities on their domain of definition. Note that (2) has an impor-
tant practical application. It implies that any point-to-point control problem
is reduced to the problem of determining a (small) set of parameters: the
four switching times and the five control values between each two consecutive
switchings.

An interesting feature of (2) is that the bound on the number of discontinuities
is uniform over all t ≥ 0 and all x0 ∈ Rn. In this respect, the result is
global. Many other reachability with nice controls results are local in the sense
that either (1) they hold only for sufficiently small final time T , or (2) the
complexity of the set V increases with T . A typical example of case (2) is the
celebrated bang-bang theorem of linear control systems.

Theorem 1 (Bang-bang theorem [2–4]) Consider the system (1) with
f(x) = Ax and g(x) = b. Then, for any T > 0 there exists an integer
j = j(T ) such that

R(T ;U , x0) = R(T ;BBj,x0), ∀x0 ∈ Rn.

Here BBj ⊂ PCj is the set of bang-bang controls with no more than j discon-
tinuities.
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This is a local result in the sense that the number of required switches, j(T ),
increases with T . 2

Our main result was motivated by an open problem on the stability analysis
of switched systems with a nilpotent Lie algebra. We now briefly review the
relevant issues.

1.1 Stability analysis of switched systems

Two vector fields f 0,f 1 give rise to the switched system

ẋ = fσ(x), (3)

where σ : [0,∞) → {0, 1} is a piecewise constant function of time, called a
switching signal. We say that (3) is globally uniformly asymptotically stable
(GUAS) if there exists a class KL function 3 β such that for every initial
condition x(0) every solution of (3) satisfies

|x(t)| ≤ β(|x(0)|, t) ∀ t ≥ 0. (4)

The difficulty in analyzing the stability of (3) is that the switched system ad-
mits an infinite number of solutions for each initial condition. It is well-known
that the global asymptotic stability of the individual subsystems ẋ = f i(x)
is necessary but not sufficient for GUAS of the switched system (3). An
important problem is identifying conditions for the individual subsystems—
apart from the obviously necessary requirement as to their global asymptotic
stability—which guarantee GUAS of (3). This problem has received consider-
able attention in the literature; see [5, Chapter 2][6] for some available results.

For the special case of linear switched systems (that is, when f i = Aix, Ai ∈
Rn×n) determining a necessary and sufficient condition for GUAS is equivalent
to solving one of the oldest open problems in the theory of control: the problem
of absolute stability (see, e.g., [7]). Pyatnitskiy and Rapoport [8] developed
a variational approach, based on characterizing the “most unstable” solution
of the switched system, to tackle the absolute stability problem (for a survey
on the variational approach, see [9]). They applied the maximum principle
to derive many powerful results on this worst-case solution [10]. For the case
of second-order systems, it is possible to solve their optimal control problem

2 An exception is when all the eigenvalues of the matrix A are real [3, Ch. 15].
3 Recall that a function α : [0,∞) → [0,∞) is said to be of class K if it is continuous,
strictly increasing, and α(0) = 0. A function β : [0,∞)× [0,∞) → [0,∞) is said to
be of class KL if β(·, t) is of class K for each fixed t ≥ 0 and β(s, t) decreases to 0
as t →∞ for each fixed s ≥ 0.
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using dynamic programming techniques [11] (see also [9]). This provides a
necessary and sufficient condition for GUAS of switched linear systems in the
plane [12] (see also [13]).

Another promising approach for addressing the GUAS problem is based on
studying the commutation relations between the two vector fields using Lie-
algebraic techniques. The Lie bracket of two vector fields is another vector
field defined by

[f 0, f 1](x) :=
∂f 1(x)

∂x
f 0(x)− ∂f 0(x)

∂x
f 1(x). (5)

The Lie-algebra spanned by f and g is

{f , g}LA := span{f , g, [f , g], [f , [f , g]], [g, [f , g]], . . . }

where the dots indicate all iterated Lie brackets. We say that {f , g}LA is kth-
order nilpotent if all iterated Lie brackets containing k + 1 terms vanish (and
there exists a Lie bracket containing k terms that does not vanish).

Gurvits [14] showed that first- and second-order nilpotency is a sufficient con-
dition for GUAS of the switched system. Liberzon, Hespanha and Morse [15]
showed that a sufficient condition for GUAS is that the Lie-algebra is solvable
(see also [16]). This includes the special case of nilpotent Lie-algebras (of any
order).

Nonlinear switched systems are much less thoroughly understood. In partic-
ular, the methods used to tackle nilpotent linear switched systems do not
seem to apply. These issues are explained in [1] where the question whether
nilpotency implies GUAS for nonlinear switched systems is posed as an open
problem. Mancilla-Aguilar [17] showed that the answer is affirmative for the
case of first-order nilpotency (that is, when the vector fields commute).

It is well-known that there is a strong connection between the maximum prin-
ciple (MP) of optimal control and {f , g}LA (see, e.g., [3,18]). This suggests
that the variational and Lie-algebraic approaches are actually related. Indeed,
Margaliot and Liberzon [19] showed that if {f , g}LA is second-order nilpotent,
then the worst-case solution of the switched system contains no more than two
switches. The proof is based on a Lie-algebraic analysis of the switching func-
tion defined in the MP. In particular, this implies that second-order nilpotency
implies GUAS for nonlinear switched systems.

An analysis of the arguments in [19] shows that their approach cannot be used
to address the case of third-order nilpotency, that is, when

[f i, [f j, [fk, f l]]](x) = 0, ∀ i, j, k, l ∈ {0, 1}. (6)
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Our main result is that if {f , g}LA is third-order nilpotent then (2) holds. To
prove this, we apply a new approach based on (1) a product expansion for
the Chen series derived by Sussmann [20]; and (2) a second-order MP (see,
e.g., [21–23]).

Note that setting u ≡ 0 [u ≡ 1] in (1) yields ẋ = f(x) [ẋ = f(x) + g(x)].
Hence, for f 0 = f and f 1 = f +g, every trajectory of the switched system (3)
is also a solution of (1). Using this we derive, as a corollary of our main result,
a new sufficient condition for the stability of nonlinear switched systems.

The remainder of the paper is organized as follows. Our main result is stated
in Section 2. Section 3 reviews several known results that are used later on.
These allow reducing the proof to the analysis of time-optimal controls for a
specific control system. Section 4 is devoted to the analysis of the regularity
properties of these time-optimal controls. The proof of our main result is
completed in Section 5. Section 6 demonstrates the ideas using an example.
Section 7 contains some concluding remarks.

2 MAIN RESULT

Fix an arbitrary point x0 ∈ Rn. We use x(·; u, x0) to denote the solution of
the system (1) with initial condition x(0) = x0 corresponding to a control
u ∈ U . Since the right-hand side of (1) is bounded on every bounded ball
in Rn, there exists a largest time Tmax ∈ (0,∞] (that depends on |x0|) such
that x(·; u, x0) is well defined for all u ∈ U and all t ∈ [0, Tmax). We are now
ready to state our main result.

Theorem 2 If {f , g}LA is third-order nilpotent then

R(t;U ,x0) = R(t;PC4, x0), ∀t ∈ [0, Tmax).

The next result will allow us to apply Theorem 2 to the stability analysis
of (1). We say that the control system (1) is GUAS if there exists a class KL
function β such that for any u ∈ U

|x(t; u, x0)| ≤ β(|x0|, t), ∀t ≥ 0. (7)

In other words, the bound (7) holds for every solution of the control system.

For c ∈ [0, 1], we use x(t; c, x0) to denote the solution of (1) corresponding to
the constant control u(t) ≡ c.

Proposition 1 Suppose that (1) there exists function β̄ ∈ KL such that for
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any c ∈ [0, 1]
|x(t; c, x0)| ≤ β̄(|x0|, t), ∀t ≥ 0 (8)

and (2) for any tf < Tmax there exists a finite integer d (that does not depend
on tf) such that

R(tf ;U ,x0) = R(tf ;PCd, x0). (9)

Then the control system (1) is GUAS.

Note that (8) implies in particular that for any fixed c ∈ [0, 1] the system ẋ =
f(x) + cg(x) is GAS.

Proof. Fix an arbitrary tf < Tmax. Consider the problem of finding a con-
trol u ∈ U that maximizes J(u) := |x(tf )|2. Such a control exists, and we
use u∗, x∗ to denote an optimal control and the corresponding trajectory, re-
spectively. It follows from (9) that we may assume, without loss of generality,
that u∗ ∈ PCd. The interval [0, tf ] is thus divided into a maximum of d + 1
subintervals: [t0, t1), [t1, t2), . . . , [td, td+1], with t0 = 0 and td+1 = tf , on each of
which x∗ satisfies ẋ = f(x) + cjg(x) for some cj ∈ [0, 1]. Using (8) yields

|x∗(tf )| ≤ β̄(. . . β̄(β̄(β̄(|x0|, t1), t2 − t1), t3 − t2 − t1), . . . , td+1 − td − · · · − t1).

Lemma 2.2 in [17] implies that there exists β ∈ KL such that

β̄(. . . β̄(β̄(β̄(r, t1), t2 − t1), t3 − t2 − t1), . . . , td+1 − td − · · · − t1) ≤ β(r, td+1)

for all r ≥ 0 and all t1 ≥ 0, t2 ≥ t1, . . . , td+1 ≥ t1 + · · ·+ td. Hence,

|x∗(tf )| ≤ β(|x0|, tf ). (10)

In view of the bound β(|x0|, tf ) ≤ β(|x0|, 0) and the fact that x0 and tf < Tmax

were arbitrary, we conclude that x∗(t) is bounded for all t and so exists globally
in time. In other words, Tmax = ∞, and tf could be an arbitrary positive
number. By the definition of x∗, we conclude that all solutions of (1) satisfy
the bound (10).

Loosely speaking, Proposition 1 states that to obtain instability in a control
system that “switches” between GAS subsystems, we must never stop switch-
ing. Combining Theorem 2 and Proposition 1 yields the following.

Corollary 1 Suppose that (1) there exists a function β̄ ∈ KL such that for
any c ∈ [0, 1]

|x(t; c, x0)| ≤ β̄(|x0|, t), ∀t ≥ 0

and (2) {f , g}LA is third-order nilpotent. Then the control system (1) is
GUAS, and, in particular, the switched system (3) with f 0 = f and f 1 = f+g
is GUAS.

The remainder of this paper is devoted to the proof of Theorem 2.
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3 PRELIMINARIES

In this section, we review two results that will be used later on.

3.1 THE HALL-SUSSMANN SYSTEM

The first result shows that the study of a general third-order nilpotent system
can be reduced to the study of a specific third-order nilpotent system.

We use the notation exp(tf)(x0) for the solution at time t of the differential
equation ẋ = f(x), x(0) = x0.

Proposition 2 If {f , g}LA is third-order nilpotent, then the solution of (1)
satisfies

x(t; u, x0) = exp(C1(t; u)f) ◦ exp(C2(t; u)g) ◦ exp(C3(t; u)[f , g])

◦ exp(C4(t; u)[f , [f , g]]) ◦ exp(C5(t; u)[g, [f , g]])(x0), (11)

where the Cis are the solution of

Ċ(t) = p + uq(C(t)), C(0) = 0, (12)

with p = (1, 0, 0, 0, 0)T and q = (0, 1, C1, C
2
1/2, C1C2)

T .

Proof. Note that if {f , g}LA is third-order nilpotent, then the set of vector
fields {f , g, [f , g], [f , [f , g]], [g, [f , g]]} is a P. Hall basis of {f , g}LA. Hence,
Proposition 2 is a special case of the main theorem in [20].

We refer to (12) as the Hall-Sussmann system. 4 It is easy to see that its
solutions C(t; u) ∈ R5 exist for any u ∈ U and all t ∈ R. A direct calculation
yields

[q, [p, q]] = (0, 0, 0, 0, 1)T , [p, [p, q]] = (0, 0, 0, 1, 0)T ,

and all higher-order brackets vanish. Hence, {p, q}LA is also third-order nilpo-
tent. Note also that the vector q is polynomial in the Cis (see [26] for some
related considerations).

3.2 REACHABILITY AND TIME-OPTIMALITY

It will be useful to define another control system by introducing the vari-
ables y1(t) := C1(t) − t, and yi(t) := Ci(t) for i = 2, . . . , 5. Using (12)

4 For more details on the Hall-Sussmann system and its applications, see [24][25].
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yields y1(t) ≡ 0 and

ẏ2 = u, y2(0) = 0

ẏ3 = ut, y3(0) = 0

ẏ4 = ut2/2, y4(0) = 0 (13)

ẏ5 = uty2, y5(0) = 0.

Note that this is a time-varying driftless control system.

The next result is a special case of a construction introduced by Sussmann
in [27]. It will allow us to study the reachable set of (12) using variational
principles.

Proposition 3 Fix an arbitrary T > 0 and u ∈ U . There exists a time T ′ ∈
[0, T ] and a control

v(t) :=





w∗(t), t ∈ [0, T ′)

0, t ∈ [T ′, T ]
(14)

such that: (1) w∗ is a time-optimal control for the system (13); and
(2) C(T ; v) = C(T ; u).

In other words, the control v, which is a concatenation of a time-optimal
control and the zero control, steers the Hall-Sussmann system to the same
point as the control u does at the same final time T .

Proof. Note that C1(T ; u) = C1(T ; v) = T , so we only need to prove the
result for C2, . . . , C5. Clearly, it is enough to prove that y(T ; u) = y(T ; v)
where y := (y2, . . . , y5)

T . Denote yu := y(T ; u), and consider the problem of
finding a time-optimal control w∗ ∈ U that steers (13) to yu in minimal time.
It follows from [28, §7, Theorem 3] that such a control does exist, so there
exists T ′ ∈ [0, T ] such that y(T ′; w∗) = yu. Now (13) and (14) yield y(T ; v) =
y(T ′; v) = y(T ′; w∗) = yu.

In the next section, we analyze the properties of time optimal controls of (13).

4 TIME OPTIMAL CONTROLS

To apply the MP, we introduce the adjoint vector λ(t) = (λ2(t), . . . λ5(t))
T

and the Hamiltonian

H(t, λ, u, y) := u(λ2 + λ3t + λ4t
2/2 + λ5ty2). (15)

Applying the MP yields the following result.
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Proposition 4 Suppose that u∗ : [0, T ′] → [0, 1] is a time-optimal control
for (13), and let y∗ denote the corresponding trajectory. Then there exist ab-
solutely continuous functions λi(t), i = 2, . . . , 5, such that λ(t) 6= 0 for all t,

λ̇2 = −λ5tu

λ̇3 = λ̇4 = λ̇5 = 0, (16)

and

u∗(t) =





0, ϕ(t) < 0

1, ϕ(t) > 0
(17)

where

ϕ := λ2 + λ3t + λ4t
2/2 + λ5ty

∗
2. (18)

Note that (16), combined with the absolute continuity of λ, implies that λ3,
λ4, and λ5 are constants. It follows from (18) that ϕ is absolutely continuous,
and differentiating it yields

ϕ̇(t) = λ3 + λ4t + λ5y
∗
2(t) (19)

for almost all t. It follows from (19) that ϕ̇ is also absolutely continuous and
differentiating again yields

ϕ̈(t) = λ4 + λ5u
∗(t). (20)

We use Z(ϕ, [0, T ′]) to denote the set of zeros of ϕ on [0, T ′]. It is well-known
that this set can be, in general, very complex (see, e.g., [29] [30] and the
references therein). We now analyze the possible cases.

4.1 Bang arcs

If ϕ(t) = 0 holds only on discrete points, then (17) implies that u∗(t) ∈ {0, 1}
for almost all t, that is, u∗ is a bang-bang control.

Proposition 5 Suppose that Z is a discrete set of points. Then any time-
optimal control u∗ : [0, T ′] → [0, 1] is bang-bang and either: (1) u∗ is periodic;
or (2) u∗ contains no more than three switches on [0, T ′].

Proof. It is sufficient to prove that any bang-bang control u∗ with more
than three switches is periodic. Suppose that u∗ has exactly four switches
at times τ1 < τ2 < τ3 < τ4. For notational convenience, we set τ0 = 0 and τ5 =
T ′. We assume, without loss of generality, that u∗(t) = 0 for t ∈ (τ0, τ1),
so u∗(t) = 1 for t ∈ (τ1, τ2), and so on.
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We use ϕi(t) to denote the restriction of the absolutely continuous function ϕ
on the interval (τi, τi+1). It follows from (20) that ϕ1(t) = (λ4 +λ5)t

2 +c1t+c2

for some constants c1 and c2. Combining this with the fact that ϕ1 must vanish
on τ1, τ2 yields ϕ1(t) = (λ4 + λ5)(t − τ1)(t − τ2). Since u(t) = 1 on (τ1, τ2) it
follows from (17) that λ4 + λ5 < 0. Analyzing the next interval, we find
that ϕ2(t) = λ4(t − τ2)(t − τ3), and that λ4 > 0. Similarly, ϕ3(t) = (λ4 +
λ5)(t− τ3)(t− τ4).

The absolute continuity of ϕ̇ implies that ϕ̇1(τ2) = ϕ̇2(τ2) and ϕ̇2(τ3) = ϕ̇3(τ3).
This yields

(λ4 + λ5)(τ2 − τ1) = λ4(τ2 − τ3) and λ4(τ3 − τ2) = (λ4 + λ5)(τ3 − τ4). (21)

Hence, τ2 − τ1 = τ4 − τ3 so ϕ is periodic. It now follows from (17) that u∗ is
periodic.

The analysis based on the classical, first-order, MP provides considerable in-
formation on any time optimal control u∗. However, the fact that u∗ might
be periodic implies that the number of switches can increase with the final
time T ′. In order to rule out this possibility, we need to apply a more accurate
analysis.

4.1.1 Second-order analysis

In this section, we apply a second-order analysis to prove that any bang-bang
control with more than three switches is not optimal.

Proposition 6 Suppose that Z is a discrete set of points. Then any time-
optimal control u∗ : [0, T ′] → [0, 1] is bang-bang and contains no more than
three switches on [0, T ′].

Proof. Assume that u∗ is a time-optimal control with exactly four switches
on [0, T ′]. We use 0 < τ1 < τ2 < τ3 < τ4 < T ′ to denote the switching times,
and assume, without loss of generality, that u∗(t) = 0 on t ∈ [0, τ1). Let y∗

denote the corresponding trajectory. Using (13) yields

y∗2(T
′) = τ4 − τ3 + τ2 − τ1

y∗3(T
′) = (τ 2

4 − τ 2
3 + τ 2

2 − τ 2
1 )/2

y∗4(T
′) = (τ 3

4 − τ 3
3 + τ 3

2 − τ 3
1 )/6 (22)

y∗5(T
′) =

(
(τ2 − τ1)

2(τ1 + 2τ2)

+τ 2
3 (3τ1 − 3τ2 + τ3) + 3(τ2 − τ1 − τ3)τ

2
4 + 2τ 3

4

)
/6.

For α ∈ R4 and s > 0, define a new control ũ(t; α, s) by perturbing the
switching times of u∗ to τ̃i := τi + sαi, i = 1, . . . , 4. In other words, ũ(t) = 0
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for t ∈ (0, τ̃1), ũ(t) = 1 for t ∈ (τ̃1, τ̃2), and so on.

It is clear that for any α ∈ R4, there exists a sufficiently small s0 > 0
such that ũ(s, α) : [0, T ′] → [0, 1] is an admissible control for all s ∈ [0, s0].
Let ỹ(T ′; s, α) denote the value of the corresponding trajectory at time T ′.
It is easy to obtain an explicit expression for ỹ(T ′) by substituting τ̃i for τi

in (22).

Let z(T ′; s,α) := ỹ(T ′; s,α) − y∗(T ′). Note that the definition of τ̃i implies
that z(T ′; 0,α) = 0. We now expand z as a Taylor series about s = 0. A
calculation yields

z(T ′; s,α) = sAα + o(s) (23)

where

A =




−1 1 −1 1

−τ1 τ2 −τ3 τ4

−τ 2
1 /2 τ 2

2 /2 −τ 2
3 /2 τ 2

4 /2

a τ2(τ2 − τ1)− b τ3(τ1 − τ2) + b (τ2 − τ1 + τ4 − τ3)τ4




,

with a := (τ 2
1 − τ 2

2 + τ 2
3 − τ 2

4 )/2, b := (τ 2
3 − τ 2

4 )/2, and o(ε) denotes terms that

satisfy limε→0
o(ε)

ε
= 0.

Let Q := {Aα : α ∈ R4}. Then, every r ∈ Q is a tangent direction for the
difference ỹ(T ′)−y∗(T ′). Recall that the proof of the MP is based on the fact
that if u∗ is optimal then there exists a direction v such that vT r ≤ 0 for
any r ∈ Q. This v is actually the value of the adjoint at the final time T ′.
Thus, it is possible to choose a function λ(·) satisfying all the conditions in
Proposition 4 such that

λT (T ′)Aα ≤ 0, ∀α ∈ R4. (24)

If λT (T ′)Aα0 < 0 for some α0 ∈ R4, then λT (T ′)A(−α0) > 0 and this
contradicts (24). Hence, λT (T ′)Aα = 0,∀α ∈ R4, so

λT (T ′)A = 0. (25)

A calculation yields det(A) = (τ1 − τ2)(τ2 − τ3)
2(τ3 − τ4)(τ1 − τ2 − τ3 + τ4)/4.

If det(A) 6= 0 then (25) yields λ(T ′) = 0 which is a contradiction of the MP
(Proposition 4). Hence,

τ4 = τ3 + τ2 − τ1 (26)

(which, not surprisingly, is the result we already derived using the MP). Sub-
stituting (26) in the expression for A, we find that A has a single eigenvalue
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that is zero. The corresponding eigenvector is

v1 = (τ2 − τ3, 2τ1 − τ2 − τ3, 2τ1 − τ2 − τ3, τ2 − τ3)
T .

It follows from (25) that λ(T ′) is an eigenvector of AT corresponding to the
zero eigenvalue. This yields

λ(T ′) = c




(τ2 − τ1)(τ1 − 2τ3)(τ1 − τ2 − τ3)

(τ1 − τ2)(2τ1 + τ2 − τ3)

2(τ2 − τ1)

2(τ1 − τ3)




,

for some constant c. Hence, λ4 = 2c(τ2− τ1), but we already know that λ4 > 0
so c > 0. Thus, λ is uniquely defined up to multiplication by a positive scalar.

We now analyze the effect of the specific perturbation α = v1, that is, we
consider ũ = ũ(s,v1). For this perturbation the first term in (23) vanishes and
a calculation using (22) yields

z(T ′; s, v1) = s2(τ2 − τ1)(τ3 − τ2)(0, 0, 2τ1 − τ2 − τ3, 2(τ1 − τ2))
T + o(s2).

Hence,

λT (T ′)z(T ′; s,v1) =

= s2(τ2 − τ1)(τ3 − τ2)(λ4(2τ1 − τ2 − τ3) + 2λ5(τ1 − τ2)) + o(s2)

= s2(τ2 − τ1)(τ3 − τ2)
2λ4 + o(s2)

where the second equation follows from (21). We already know that λ4 > 0 so
λT (T ′)z(T ′; s, v1) > 0 for all sufficiently small s > 0.

To complete the proof, we need the following result, which is an immediate
corollary of Theorems 1 and 2 in [22] (see also [21,31]). We use the nota-

tion z(k)(T ′; 0,α) := dkz(T ′;s,α)
dsk |s=0.

Corollary 2 Suppose that u∗ : [0, T ′] → [0, 1] is a time-optimal control for (13),
and y∗ is the corresponding trajectory. Suppose that there exists α0 ∈ R4

such that: z(1)(T ′; 0, α0) = 0 and z(j)(T ′; 0,α0) 6= 0 for some j > 0. Let
q0 := z(k)(T ′; 0,α0) where k > 0 is the smallest integer for which the derivative
does not vanish. Then, there exists an absolutely continuous λ(t) 6= 0 on [0, T ′]
which satisfies the conditions in Proposition 4 such that: (1) λT (T ′)q0 ≤ 0;
and (2) λT (T ′)z(1)(T ′; 0,α) ≤ 0, ∀α ∈ R4.

We already showed that for the specific perturbation α0 = v1, Corollary 2
does not hold. Summarizing, we conclude that in the bang-bang case, any
bang-bang control with exactly four switches is not time optimal.
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Suppose now that u∗ is a bang-bang control with j switches for some j > 4. It
is easy to verify that perturbing the first four switching times, and reasoning
exactly as above, leads to similar results, namely, that u∗ cannot be optimal.
We conclude that in the bang-bang case u∗ ∈ BB(T ′, 3). This completes the
proof of Proposition 6.

We note that it is possible to apply a similar analysis directly on the nilpotent
control system (1) using a powerful second-order MP developed by Agrachev
and Gamkrelidze [23] (see also [31]). This is the approach we used in the
abridged version of this paper [32]. However, Propositions 2 and 3 allow us to
reduce the general case to the study of the specific system (13) and this makes
it possible to derive the simpler proof presented above.

4.2 Singular arcs

Consider now the case where ϕ(t) = 0 on an interval I ⊆ [0, T ′]. In this
case ϕ̇ = ϕ̈ = 0 on I, so (20) yields λ4 + uλ5 = 0. If λ5 = 0 then (18), (19)
and (20) yield λ(t) = 0 which is a contradiction of the MP. Hence, λ5 6= 0
and u = −λ4/λ5. Recalling that λ4 and λ5 are constants, we conclude that on
a singular arc u(t) is constant.

4.3 Junctions

In this section, we show that every optimal trajectory is composed of a finite
concatenation of bang-bang and singular arcs.

Proposition 7 If u∗ : [0, T ′] → [0, 1] is a time-optimal control for the sys-
tem (13) then

u∗ ∈ PC(T ′, 3). (27)

Proof. We consider several cases.

Case 1: Suppose that u∗ contains no bang arcs. The (absolute) continuity
of ϕ implies that in this case ϕ is identically zero on [0, T ′]. It follows from the
discussion in Section 4.2 that u∗ ≡ c on [0, T ′] and, in particular, (27) holds.

Case 2: Suppose that u∗ contains a bang arc. Without loss of generality,
we may assume that there exist 0 ≤ t1 < t2 ≤ T ′ such that ϕ(t) < 0
for t ∈ J := (t1, t2).
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Case 2.1: J is strictly contained in (0, T ′). It follows from (17) that u∗(t) ≡ 0
on J and ϕ(t1) = ϕ(t2) = 0. Now (20) implies that ϕ is a second-order
polynomial on J , so ϕ(t) = a(t − t1)(t − t2) with a 6= 0. Differentiating
yields ϕ̇(t1) = a(t1 − t2) and ϕ̇(t2) = a(t2 − t1). Both derivatives are different
from zero, and since ϕ is absolutely continuous, we conclude that t1 (t2) is the
upper (lower) bound of another bang arc. Thus, u∗ is composed of a concate-
nation of bang-arcs, and Proposition 6 implies that in this case u∗ ∈ BB(T ′, 3)
and, in particular, (27) holds.

Case 2.2: Suppose that no bang arc is strictly contained in [0, T ′]. Thus,
if (t1, t2) is a bang arc then either t1 = 0 or t2 = T ′. The most general case
possible is that we have two bang arcs: one on (0, t1) and the second on (t2, T

′),
with 0 < t1 < t2 < T ′, and the interval (t1, t2) does not contain any bang arc.
It follows from the discussion above that u∗(t) ≡ c for t ∈ (t1, t2). Hence, we
conclude that in this case u∗ ∈ PC(T ′, 2).

This completes the proof of Proposition 7.

5 PROOF OF THEOREM 2

We are now ready to prove our main result. Fix tf < Tmax and u ∈ U . It
follows from Proposition 3 that we can find a control v in the form (14)
such that C(tf ; v) = C(tf ; u), and by Proposition 7 that v ∈ PC4. Applying
Proposition 2 yields x(tf ; u, x0) = x(tf ; v, x0). This completes the proof of
Theorem 2. 2

6 AN EXAMPLE

As noted above, Theorem 2 has an important practical implication as any
point-to-point control problem is reduced to the problem of determining a
small set of parameters. This is demonstrated by the following example.

Example 1 Consider the control system (1) with n = 2, f(x) = (−1,−x2
1)

T ,
g(x) = (2, 0)T , and x(0) = p := (0, 2)T . It is easy to verify that {f , g}LA is
third-order nilpotent. Consider the following optimal control problem: find a
control u∗ ∈ U that maximizes J(u) := |x(1; u, p)|2.

Applying the MP to this optimal control problem yields that the adjoint satisfies

λ̇1(t) = 2x1(t)λ2(t) (28)

λ̇2(t) = 0
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with λ(1) = x(1). Hence, λ2 is constant. Furthermore, since |ẋ1| ≤ 1 and ẋ2 =
−x2

1, we see that x(0) = p implies x2(1) > 0, so λ2 > 0.

The switching function is ϕ(t) = 2λ1(t) so ϕ̇(t) = 4x1(t)λ2 and ϕ̈ = −4λ2 +
8λ2u. Since λ2 > 0, we see that on a singular arc u(t) ≡ 1/2.

In the bang-bang case, u ∈ {0, 1} for almost all t and has no more than three
switches. However, since λ2 > 0 it is easy to see that on a bang-bang arc
starting with x1(0) = 0, sgn(ϕ(t)) = sgn(ϕ̇(t)), so there cannot be any more
switches. Thus, u(t) ≡ v, ∀t ∈ [0, 1], where v is either zero or one. For v = 0,
the resulting trajectory satisfies x(1) = (−1, 5/3)T , and for v = 1, x(1) =
(1, 5/3)T . Thus, in the bang-bang case,

|x(1)|2 = 34/9. (29)

If a singular arc exists, then it follows from the analysis above that the general
form of the optimal control is

u(t) =





v1, t ∈ [0, τ1)

1/2, t ∈ [τ1, τ2)

v2, t ∈ [τ2, 1],

(30)

where v1, v2 ∈ {0, 1} and 0 ≤ τ1 ≤ τ2 ≤ 1. If τ1 > 0 then ϕ̇(τ1) = 4x1(τ1)λ2 6= 0
so u cannot be singular on [τ1, τ2]. Hence, the singular case is only possible
if τ1 = 0. For v2 = 0, the corresponding trajectory satisfies x(1) = (τ2− 1, 2−
(1− τ2)

3/3)T , and for v2 = 1, x(1) = (1− τ2, 2− (1− τ2)
3/3)T . In both cases,

the maximal value of |x(1)|2 is obtained for τ2 = r, where r is the smallest
real root of the equation z4 − 4z3 + 6z2 + 2z − 2 = 0 (r ≈ 0.4886). Then

|x(1)|2 = (r − 1)2 + (2− (1− r)3/3)2

≈ 4.08519.

Comparing this to (29), we conclude that there are exactly two optimal controls

u∗(t) =





1/2, t ∈ [0, r]

v, t ∈ [r, 1].
(31)

with v = 0 or v = 1.

It is interesting to note that in the second-order nilpotent case there always
exists an optimal control that is bang-bang [19]. Example 1 demonstrates
that this is no longer true in the third-order nilpotent case. In this case,
there exist points in R(T ;U) that can be reached using piecewise constant
controls, but cannot be reached using bang-bang controls. Another example
that demonstrates this phenomena can be found in [33].
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7 CONCLUSIONS

We considered a nonlinear control system that is affine in the control. We
showed that if the Lie-algebra spanned by the vector fields is third-order nilpo-
tent, then any point that can be reached at time T using a measurable control
can also be reached, at the same time T , using a piecewise constant control
with no more than four switches. The bound on the number of switches is
uniform over any final time T .

As a corollary, we derived a new sufficient condition for global uniform as-
ymptotic stability of the control system and, therefore, of the corresponding
switched system. This is a promising step toward a solution of the open prob-
lem described in [1].

Interesting topics for further research include the following. First, the study
of reachability with nice controls for higher orders of nilpotency. Second, the
combination of our results with the approach of feedback-nilpotentization. The
key idea is that some systems that are not nilpotent can be made nilpotent by
means of a feedback transformation [34]. Third, there are methods for approx-
imating non-nilpotent control systems using nilpotent ones [34][35]. Further
study of the implications of our results in this context may be of interest.
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