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Input to State Stabilizing Controller for Systems
with Coarse Quantization

Yoav Sharon, Daniel Liberzon

Abstract—We consider the problem of achieving input-to-state
stability (ISS) with respect to external disturbances for control
systems with quantized measurements. Quantizers considered in
this paper take finitely many values and have an adjustable
“center” and “zoom” parameters. Both the full state feedback
and the output feedback cases are considered. Similarly to
previous techniques from the literature, our proposed controller
switches repeatedly between “zooming out” and “zooming in”.
However, here we use two modes to implement the “zooming in”
phases, which allows us to attenuate an unknown disturbance
while using the minimal number of quantization regions. Our
analysis is trajectory-based and utilizes a cascade structure of
the closed-loop hybrid system. We further show that our method
is robust to modeling errors using a specially adapted small-
gain theorem. The main results are developed for linear systems,
but we also discuss their extension to nonlinear systems under
appropriate assumptions.

Index Terms—Quantized systems, Stability of hybrid systems,
Input-to-state stability (ISS), Disturbances

I. INTRODUCTION

A quantizer is a device that converts a real-valued signal
into a piecewise constant one taking a finite set of values.

In the context of feedback control systems, the real-valued
signal is either the measurable output of the system or the
control input. Quantization is generally a constraint related
to the implementation of the control system. Digital sensors,
digital controllers and data links with limited date rate are
typical in many implementations of control systems, and they
all induce some degree of quantization.

The study of the influence of quantization on the behavior of
feedback control systems can be traced back at least to [1]. In
the literature on quantization, the quantized control system is
typically regarded as a perturbation of the ideal (unquantized)
one. Two principal phenomena account for changes in the
system’s behavior caused by quantization. The first one is
saturation: if the quantized signal is outside the range of
the quantizer, then the quantization error is large, and the
system may significantly deviate from the nominal behavior
(e.g., become unstable). The second one is deterioration of
performance near the target point (e.g., the equilibrium to
be stabilized): as this point is approached, higher precision
is required, and so the presence of quantization errors again
distorts the properties of the system. These effects can be
precisely characterized using the tools of system theory, specif-
ically, Lyapunov functions and perturbation analysis; see, e.g.,
[2], [3], [4] for results in this direction. We refer to this
line of work as the “perturbation approach”. The more recent

This work was done at the Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana-Champaign, Urbana, Illinois, USA. E-mail:
ysharon@ieee.org, liberzon@illinois.edu. The work of both authors was
supported by NSF ECCS-0701676 award.

work [5], also falling into this category, is particularly relevant
because it reveals the importance of input-to-state stability for
characterizing the robustness of the controller to quantization
errors for general nonlinear systems.

An alternative point of view which this paper follows,
pioneered by Delchamps [3], is to regard the quantizer as
an information-processing device, i.e., to view the quantized
signal as providing a limited amount of information about
the real quantity of interest (system state, control input, etc.)
which is encoded using a finite alphabet. This “information
approach” seems especially suitable in modern applications
such as networked and embedded control systems. The main
question then becomes: how much information is really needed
to achieve a given control objective? In the context of sta-
bilization of linear systems, one can explicitly calculate the
minimal information transmission rate that will dominate the
expansiveness of the underlying system dynamics. Results in
this direction are reported in [6], [4], [7], [8], [9], [10] and in
the papers cited in the next paragraph; [11], [12], [13], [14]
provide extensions to nonlinear systems.

All the aforementioned works only addressed stability in the
absence of external disturbances. Several papers did address
the issue of external disturbances, differing mainly in the sta-
bility property they aim to achieve and in their assumptions on
the external disturbance. Papers [15], [16] and [17] designed
a controller which guarantees stability only for a disturbance
whose magnitude is lower than some known value. In the paper
[18] mean square stability in the stochastic setting is obtained
by utilizing statistical information about the disturbance (a
bound on its appropriate moment). The paper [19] designed a
controller with which it is possible to bound the plant’s state
in probability. With the expense of one additional feedback
bit, no further information about the disturbance is required.
Note that these two latter papers use (and prove) stochastic
stability notions. All of these papers followed the information
approach. Deterministic stability for a completely unknown
bounded disturbance was initially shown in [20]. By general-
izing the perturbation approach of [4], [5], the deterministic
stability property achieved in [20] is input-to-state stability
(ISS) which, apart from ensuring a bounded state response to
every bounded disturbance, also ensures asymptotic stability
(convergence to the origin) when the disturbance converges
to zero. The approach of [20] was also shown to produce `2
stability in [14] (also, [21]).

In this paper we also address the problem of achieving
ISS for deterministic systems and completely unknown dis-
turbances. In contrast to [20], which followed the perturbation
approach, our first and main contribution here is that we do
this following the information approach. The main advantage
of using the information approach is that it requires fewer, pos-
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sibly many fewer, quantization regions, which also translates to
lower data rate. As a result, a better understanding is achieved
of how much information is required for ISS disturbance
attenuation. In fact, when all state variables are observed
(quantized state feedback) we are able to achieve a data rate
which can be arbitrarily close to the minimal data rate required
for stabilization with no disturbance. We stress that following
the information approach and not the perturbation approach
necessitates significantly different design and analysis tools
than what is described in [20].

Our second contribution is that we also consider the case
where the state space is only partially measured, the situation
commonly referred to as output feedback. This is a signifi-
cant generalization of the approach described in [10], where
only a specific observer was given and no disturbances were
considered. The papers [18], [19] and [13] do formulate a
system with output feedback, but it is assumed there that a
state estimate is generated before the quantization is applied
([13] does not deal with disturbances). Here we generate the
state estimate from the quantized measurements. We argue that
this setting is much more reasonable when the quantization
is due to physical or practical constraints on the sensors (as
opposed to just a data rate constraint); refer to Remark 2 for
more details. We emphasize that our results are novel even for
the state feedback case.

Our third contribution is establishing stability under mod-
eling errors where the system model is known only approx-
imately, and may also vary over time. We show that under
small enough modeling errors the system remains ISS in a
local practical sense. We prove this robustness result using a
specially adapted small-gain theorem.

The paper is organized as follows: In §II-A we define the
system and the specific quantizer we use; in §II-B we define
the desired stability property, an extension of the ISS property;
in §III we present the proposed controller; in §IV we state and
prove our main results; in §V we show that we can arbitrarily
approach the minimum data-rate for the unperturbed system;
finally, in §VI we show how our results can be extended to
nonlinear systems. We defer to part A of the appendix the
proofs of our technical lemmas. In part B of the appendix we
show that the small-gain theorem applies to our modified ISS
notion.

II. PROBLEM STATEMENT

A. System Definition

The linear continuous-time dynamical system we are to
stabilize is as follows (t ∈ R≥0):

ẋ (t) = Ax (t) +Bu (t) +Dw (t) , x(0) = x0

y (t) = Cx (t) (1)

where x ∈ Rnx is the state, x0 ∈ Rnx is an unknown initial
condition, u ∈ Rnu is the control input, w ∈ Rnw is an
unknown disturbance, assumed to be Lebesgue-measurable
and locally bounded, and y ∈ Rny is the measured output
(ny ≤ nx).

While y is what the sensors measure, we assume that the in-
formation available to the controller is z : {kTs |k ∈ Z≥0 } →

Rny , which is a sampled and quantized version of y:

z (kTs) = Q (y (kTs) ; c (kTs) , µ (kTs)) (2)

where Q is a quantization function and Ts > 0 is the
time-sampling interval. The quantization parameters, c :
{kTs |k ∈ Z≥0 } → Rny and µ : {kTs |k ∈ Z≥0 } → R>0,
are generated by the controller. For convenience we use the
notation zk

.
= z (kTs), and similarly for other variables, so

(2) becomes zk = Q (yk; ck, µk). We refer to the special case
where C = I , the identity matrix, as the quantized state
feedback problem. We refer to the general case where C is
arbitrary as the quantized output feedback problem.

We consider the following (square) quantizer. Assume
N , the number of quantization regions per observed di-
mension, is an odd number. The quantizer is denoted by(
Q1, . . . , Qny

)T
= Q (y; c, µ) where each scalar component

is defined as follows (see Figure 1 for an illustration):

Qi (x; c, µ)
.
= ci+ (3)

2µ×

 (−N + 1)/2 xi − ci ≤ (−N + 2)µ
(N − 1)/2 (N − 2)µ < xi − ci
d(xi − (ci + µ)) / (2µ)e otherwise.

We refer to c as the center of the quantizer, and to µ as the
zoom factor. Note that what will actually be transferred from
the quantizer to the controller will be an index to one of the
quantization regions. The controller, which either generates the
values c and µ or knows the rule by which they are generated,1

uses this information to convert the received index to the value
of Q as given in (3).

Remark 1: Our results, except for those in §V, apply to a
more general family of quantizers. For an arbitrary quantizer,
we denote by Q (c, µ) the (finite) set of possible values of
Q (·; c, µ). A quantizer belongs to the family of quantizers to
which our results apply if there exist real numbers M > 1 and
0 ≤ H ≤ N − 1 such that for all y, c and µ there exists a set
QINT (c, µ) ( Q (c, µ) for which the following implications
hold with an arbitrary choice of norm:

|y − c| < Mµ ⇒ |Q (y; c, µ)− y| < µ

|y − c| < (M −H)µ ⇒ Q (y; c, µ) ∈ QINT (c, µ)

Q (y; c, µ) ∈ QINT (c, µ) ⇒ |Q (y; c, µ)− y| < µ.

The set QINT is the set of quantization regions
which are bounded in the output space — no further
assumption is needed to bound the quantization error if
the quantizer transmits an index to a region belonging
to QINT . It is easy to see that the square quantizer
above belongs to this family with QINT (y; c, µ) ={(
c1 + q1µ, . . . , cny + qnyµ

)
|qi 6∈ {−N + 1, N − 1} , ∀i

}
,

M = N and H = 2 when the ∞-norm is considered.

1The quantization parameters c and µ can be available to the sensors
(or the sensor side of the communication link) depending on the source of
quantization. When the quantization is due to the limited bandwidth of the
communication, and there is sufficient computation capability on the sensor
side of the communication link, the quantization parameters c and µ may
be generated simultaneously on both sides of the communication link. When
the quantization is due to the sensors, and the communication constraints
between the controller and the sensors can be neglected, these quantities can
be generated by the controller only and then sent to the sensors.
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Fig. 1. Illustration of the quantizer for the two-dimensional output subspace,
N = 5. The dashed lines define the boundaries of the quantization regions.
The black dots define the quantization values.

Remark 2: In the literature on quantization there appear to
be two different methods of positioning the partial measure-
ment constraint (output feedback) in the feedback loop. One
approach, followed by [18], [19] and [13], assumes that while
not all the state variables are observed, those that are observed
are measured continuously. These continuous measurements
are fed into an observer that generates a state estimate.
This state estimate is sent through a communication link to
the controller (and thus has to be quantized). The second
approach, followed by [10] and this paper, assumes that the
measurements of the observed state variables are quantized,
and from these quantized measurements a state estimate needs
to be generated. The reason for having two approaches is the
different possible sources of quantization: Both approaches
can handle the case when the communication is the source of
quantization; however, only the second approach can handle
the case when the sensors are the source of quantization.

In this paper we use the ∞-norm unless otherwise
specified. For vectors, |x| .

= |x|∞
.
= maxi |xi|. For

continuous-time signals, ‖w‖[t1,t2]
.
= maxt∈[t1,t2] |w(t)|∞,

‖w‖ .
= ‖w‖[0,∞). For discrete-time signals, ‖z‖{k1,...,k2}

.
=

maxk∈{k1,...,k2} |zk|∞, ‖z‖ .
= ‖z‖{0,...,∞}. For matrices we

use the induced norm corresponding to the specified norm
(∞-norm if none specified). For piecewise continuous sig-
nals we use the superscripts + and − to denote the right
and left continuous limits, respectively: x+

k
.
= x+ (kTs)

.
=

limt↘0 x (kTs + t), x−k
.
= x− (kTs)

.
= limt↗0 x (kTs + t).

B. Desired Stability Property

The stability properties below are defined for a general
system whose state is ξ and which is affected by an ex-
ternal disturbance, w. In the presence of a non-vanishing
disturbance, even without quantization we cannot achieve
asymptotic stability. Therefore, we aim for a weaker stability
property: that the system be bounded and converge to a ball
around the origin whose size depends on the magnitude of the
disturbance. Furthermore, when the disturbance vanishes, we
expect to recover asymptotic stability. This desired behavior is
encapsulated by the (global) ISS property, originally defined
in [22] as follows:

|ξ (t)| ≤ β (|ξ (t0)| , t− t0) + γ
(
‖w‖[t0,t]

)
, ∀t ≥ t0 ≥ 0

(4)

where γ is a function of class K∞ and β is a function of class
KL2.

In our system, in addition to the original state variables,
x, the closed-loop system contains other variables. Of these
additional variables, the zoom factor in particular does not
exhibit an ISS relation with respect to the disturbance. A
discussion in [20, §III.B] explains why it is hard and probably
impossible to have both the original state and the zoom
factor exhibit an ISS relation with respect to the disturbance.
Nevertheless, the value of the zoom factor at an arbitrary initial
time affects the ISS relation between the disturbance and the
state. Therefore, the property that we achieve, referred to as
parameterized input-to-state stability, is defined as:

|ξ (t)| ≤ β (|ξ (t0)| , t− t0;µ (t0)) + γ
(
‖w‖[t0,t] ;µ (t0)

)
µ (t) ≤ δ

(
‖ξ‖[t0,t] ;µ (t0)

)
, ∀t ≥ t0 ≥ 0 (5)

where the functions β (·, ·; ·) and γ (·; ·) are of class KL and
class K∞, respectively. We say that a function β : R3

≥0 → R≥0

is of class KL when, as a function of its first two arguments
with the third argument fixed, it is of class KL, and it is a
continuous function of its third argument when the first two
arguments are fixed. We say that a function γ : R2

≥0 → R≥0 is
of class K∞ when as a function of its first argument with the
second argument fixed, it is of class K∞, and it is a continuous
function of its second argument when the first argument is
fixed. If (5) only holds locally, i.e. there exist xmax > 0
and wmax > 0 with which (5) holds for all |ξ (0)| ≤ xmax

and all ‖w‖ ≤ wmax, then we say that the system has local
parameterized input-to-state stability.

In the case of modeling errors, even this cannot in general
be achieved. Namely, we cannot achieve a global result, only a
local one; furthermore, even with no external disturbance, the
system is only practically stable, not asymptotically stable. The
weaker result we do achieve in the case of modeling error is
local practical input-to-state stability: There exist ξmax, wmax

and δA,max such that if δA ≤ δA,max where δA ∈ R≥0 is a
measure of the modeling errors, then

|ξ (t)| ≤ β (|ξ (t0)| , t− t0) + γ
(
‖w‖[t0,t]

)
+ λ (δA) ,

∀t ≥ t0 ≥ 0 ∀ |ξ (0)| < ξmax ∀ ‖w‖[0,t] < wmax. (6)

In (6) β is a function of class KL, and γ and λ are functions of
class K∞. This property is along the lines of the input-to-state
practical stability (ISpS) [23]. The absence of the dependence
on µ in (6) is due to the local nature of this stability property.

III. CONTROLLER DESIGN

A. Overview of the Controller Design

Our controller switches between three different modes of
operation. The motivation for each of these modes is given in
this subsection, with a flow chart appearing in Figure 2.

2A function α : [0,∞)→ [0,∞) is said to be of class K if it is continuous,
strictly increasing, and α(0) = 0. A function α : [0,∞) → [0,∞) is
said to be of class K∞ if it is of class K and also unbounded. A function
β : [0,∞)× [0,∞)→ [0,∞) is said to be of class KL if β(·, t) is of class
K for each fixed t ≥ 0 and β(s, t) decreases to 0 as t→∞ for each fixed
s ≥ 0.
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Fig. 2. Flow chart of the different modes of operations.

Our quantizer consists of quantization regions of finite size,
for which the quantization error, ek

.
= zk − yk, can be

bounded, and regions of infinite size, where the quantization
error is unbounded. We refer to these regions as bounded and
unbounded quantization regions, respectively. Only a subset
of finite size of the infinite-size output space Rny can be
covered by the bounded quantization regions. However, the
size of this subset, referred to as the unsaturated region, can
be adjusted dynamically by changing the parameters of the
quantizer. Our controller follows the general framework that
was introduced in [4], [5] to stabilize the system from an
unknown initial condition using dynamic quantization. In [20]
this approach was developed further to achieve disturbance
attenuation. This framework consists of two main modes
of operation, generally referred to as zoom-in and zoom-out
modes. During the zoom-out mode, the unsaturated region is
enlarged until the measured output is captured in this region
and a state estimate with a bounded estimation error can be
established. This is followed by a switch to the zoom-in mode.
During the zoom-in mode, the size of the quantization regions
is reduced in order to achieve convergence of the estimation
error. This reduction also reduces the size of the unsaturated
region, and eventually the disturbance may drive the measured
output outside this region. To regain a new state estimate with
a bounded estimation error, the controller switches back to the
zoom-out mode. By switching repeatedly between these two
modes, an ISS relation can be established. We use the name
capture mode for the zoom-out mode.

To achieve the minimum data-rate, however, we are required
to use the unbounded regions not only to detect saturation,
but also to reduce the estimation error. We accomplish this
dual use by dividing the zoom-in mode into two modes:
a measurement-update mode and an escape-detection mode.
After receiving r successive measurements in bounded quan-
tization regions, where r is the observability index of the pair
(A,C), we are able to define a region in the state space
which must contain the state if there were no disturbance.
We enlarge this region proportionally to its current size to
accommodate some disturbance. In the measurement-update
mode we cover this containment region using both the bounded
and the unbounded regions of the quantizer. This allows us to
use the smallest quantization regions, leading to the fastest
reduction in the estimation error. However, we cannot detect
a strong disturbance in this mode. Therefore, in the escape-
detection mode we use larger quantization regions to cover the
containment region using only the bounded regions. If a strong
disturbance does come in, we can detect it as the quantized

output measurement will correspond to one of the unbounded
regions.

B. Preliminaries
In this section we assume that A ≡ A0 is fixed and known.

Extension to varying, unknown A will be discussed in §IV-C.
We define the sampled-time versions of A, u and w as (k ∈
Z≥0):

Ad
.
= exp (TsA0) , xk

.
= x (kTs) ,

udk
.
=

∫ Ts

0

exp (A0 (Ts − t))Bu (kTs + t) dt,

wd
k
.
=

∫ Ts

0

exp (A0 (Ts − t))Dw (kTs + t) dt.

With these definitions we can write

xk+1 = Adxk + udk +wd
k. (7)

We assume that (A0, B) is a controllable pair, so there exists
a matrix K such that A0+BK is Hurwitz. By construction Ad
is full rank, and in general (unless Ts belongs to some set of
measure zero) the observability of the pair (A0, C) implies that
(Ad, C) is an observable pair (see [24, Proposition 6.2.11]).
Thus with r ∈ N, the observability index, the matrix

C̃
.
=


CA−r+1

d
...
CA−1

d

C

 =


C
CAd
...
CAr−1

d

A−r+1
d (8)

has full column rank. For state feedback systems r = 1 and
C̃ is the identity matrix.

C. Controller Architecture
Our controller consists of three elements: an observer which

generates a state estimate x̂ (t) (with the notation x̂k
.
=

x̂ (kTs)); a switching logic which updates the parameters for
the quantizer and sends update commands to the observer;
and a stabilizing control law which computes the control input
based on the state estimate. For simplicity of presentation, we
assume the stabilizing control law consists of a static nominal
state feedback:

u (t) = Kx̂ (t) . (9)

However, any control law that renders the closed-loop system
ISS with respect to the disturbance and the state estimation
error will work with our controller.

Given an update command from the switching logic, the
observer generates an estimate of the state based on current
and previous quantized measurements. We require the state
estimate to be exact in the absence of measurement error and
disturbance, and to be a linear function of the measurements.
For concreteness, we use the following state estimate from [10]

which is based on the pseudo-inverse, C̃† .=
(
C̃T C̃

)−1

C̃T :

x̂k = G
(
z;ud; k

) .
= C̃†


zk−r+1 + C

∑r−1
i=1 A

−i
d u

d
k−r+i

...
zk−1 + CA−1

d u
d
k−1

zk

 .
(10)
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In [25] we presented additional approaches to generate a state
estimate that satisfy the above requirements, and compared
their properties. Note that we must have at least r successive
measurements to generate a state estimate. Therefore, (10) is
defined only for k ≥ r−1. In the special case of state feedback,
on which we will comment further as we present our results,
the state estimate is generated simply as x̂k = zk. Between
update commands the observer continuously updates the state
estimate based on the nominal system dynamics:

˙̂x(kTs+ t) = A0x̂(kTs+ t)+Bu (kTs + t) , t ∈ [0, Ts) .
(11)

D. Switching Logic

The switching logic keeps and updates a discrete time step
variable, k ∈ N, whose value corresponds to the current
sampling time of the continuous system – at each sampling
time, the switching logic updates x̂k

.
= x̂ (kTs) where k is the

discrete time step. At each discrete time step, the switching
logic operates in one of three modes: capture, measurement
update or escape detection. The current mode is stored in the
variable mode(k) ∈ {capture,update,detect}. The switching
logic also uses pk ∈ Z and saturated(k) ∈ {true, false} as
auxiliary variables.

We assume the control system is activated at k = 0 (t = 0).
We initialize x̂0 = 0, mode(0) = capture, p0 = 0, and
µ−1 = s, where s can be any positive constant and is regarded
as a design parameter. We also have the following design
parameters: α ∈ R>0, Ωout ∈ R such that Ωout > ‖A‖, and
P ∈ Z such that P ≥ r + 1. The parameter α corresponds
to the proportional expansion of the zoom factor, µ, at each
sampling time. This proportional expansion prevents the state
from leaving the unsaturated region when the disturbance
is small relative to the current value of µ. Increasing α,
subject to constraint (16) below, improves the stability to the
disturbance at the expense of lowering the convergence rate.
The parameter Ωout corresponds to the expansion rate of the
zoom factor during the zoom-out phase. The parameter P
corresponds to the number of sampling times between each
initiation of an escape-detection sequence during the zoom-in
phase. Increasing P improves the convergence rate and allows
for the use of fewer quantization regions. However, increasing
P also prolongs the time it takes to detect that the state had left
the unsaturated region due to a large disturbance, and therefore
the stability to disturbances is negatively affected. We also
define

F (µ; k)
.
=
∥∥∥CAdC̃†∥∥∥ ‖µ‖{k−r,...,k−1} (12)

which in the case of state feedback reduces to F (µ; k)
.
=

‖Ad‖µk−1.
At each discrete time step, k, the switching logic is im-

plemented by sequentially executing the following algorithms
(we use the notation (zk)i to denote the i-th element of the
vector zk):

Algorithm 1 preliminaries
if mode(k) = capture then

set µk = Ωoutµk−1
else if mode(k) = update then

set

µk =
F (µ; k) + α‖µ‖{k−r−pk−1,...,k−1−pk−1}

N
(13)

else if mode(k) = detect then
set

µk =
F (µ; k) + α‖µ‖{k−r−pk−1,...,k−1−pk−1}

N − 2
(14)

end if
have the observer record zk = Q (y(kTs);Cx̂k, µk)
if ∃i such that (zk)i = (Cx̂k)i ± (N − 1)µk then

set saturated(k) = true
else

set saturated(k) = false
end if
initialize mode(k + 1) = mode(k)

Algorithm 2 capture mode
if mode(k) = capture then

if saturated(k) then
set pk = 0

else
set pk = pk−1 + 1
if pk = r then

set pk = 0
have the observer update the state estimate:

x̂k = G (z;ud; k)
set mode(k + 1) = update

end if
end if

end if

Algorithm 3 measurement update mode
if mode(k) = update then

set pk = pk−1 + 1
have the observer update the state estimate:

x̂k = G (z;ud; k)
if pk = P − r then

set mode(k + 1) = detect
end if

end if

Algorithm 4 escape detection mode
if mode(k) = detect then

if not saturated(k) then
set pk = pk−1 + 1
have the observer update the state estimate:

x̂k = G (z;ud; k)
if pk = P then

set pk = 0, mode(k + 1) = update
end if

else
set pk = 0, µk = s, mode(k + 1) = capture

end if
end if
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IV. MAIN RESULTS

A. The Convergence Property

We define the following convergence property. It implies
that in an infinite sequence in which the switching logic is
never in the capture mode (a result of having no disturbance),
limk→∞ µk = 0. Set µ′ as

µ′k = 1, k ∈ {0, . . . , r − 1}

µ′k =
F (µ′; k) + α

N
, k ∈ {r, . . . , P − 1} (15)

µ′k =
F (µ′; k) + α

N − 2
, k ∈ {P, . . . , P + r − 1}.

If there exists σ < 1 for which the following holds:

‖µ′‖{P,...,P+r−1} ≤ σ, (16)

then we say that the controller has the convergence property.
Whether the controller has the convergence property de-

pends on the choice of the design parameters α and P . The
following Lemma (proved in the Appendix) gives a sufficient
and easy to verify condition for the existence of design
parameters with which the controller will have the convergence
property.

Lemma 1: If the following condition holds:

σpi
.
=

1

N

∥∥∥CAdC̃†∥∥∥ < 1 (17)

then it is possible to choose P and α such that the controller
will possess the convergence property.

In the state feedback case we do not need an observer
as the updates of the state estimate become simply x̂k =
G (z,ud, k) = zk. In this case (17) becomes ‖Ad‖ /N < 1.

B. Results for When the System Model Is Known

The state estimation error is defined as

x̃ (t)
.
= x̂ (t)− x (t) . (18)

In the simpler case where A ≡ A0, the evolution of the state
estimation error is independent of the state. This property is
critical in proving the following proposition, which is the main
technical step for deriving the desired stability results.

Proposition 2: If we implement the controller with the
above algorithm and that controller has the convergence prop-
erty, then the state estimation error of the closed-loop satisfies
the parameterized-ISS property, (5), with ξ = x̃.

The aggregate state of the system is
(
xT , x̂T

)T
. However,

due to the analysis that follows it will be easier to state the
results for the state

(
xT , x̃T

)T
, which relates to the former

by a simple transformation of coordinates. Our first stability
result is the following:

Theorem 1: If we implement the controller with the above
algorithm and that controller has the convergence property,
then the aggregate state of the closed-loop system satisfies the
parameterized-ISS property, (5), with ξ =

(
xT , x̃T

)T
.

In Theorem 1 the second inequality of (5) can actually be
written as µ (t) ≤ δ

(
‖x̃‖[t0,t] ;µ (t0)

)
. We also remark that

when considering t0 = 0, where x̃ (0) = x (0) and µ (0)

is a design parameter, Theorem 1 gives us the existence of
functions β ∈ KL and γ ∈ K∞, such that

|x (t)| ≤ β (|x (0)| , t) + γ
(
‖w‖[0,t]

)
, ∀t ≥ 0. (19)

Following is an outline of the proof. We divide the trajectory
of the estimation error into three repeating phases. In the first
phase the system is in capture mode, and we show using
Lemma 6 that in finite time the estimation error will be
captured and the system will switch to the second phase. In
both the second and third phases the system switches repeat-
edly between the measurement update and escape detections
modes. However, in the second phase the zoom factor, µ,
is sufficiently large compared to the disturbance so that the
system is guaranteed, by Lemma 4, not to switch to the capture
mode. In the third phase the zoom factor is small compared to
the disturbance and this guarantee is lost, but by Lemma 5 we
can still bound the trajectory during that phase. In Lemma 3 we
prove that the zoom factor keeps contracting during these last
two phases. Lemma 7 addresses the case of small disturbance
when the trajectory goes into the second phase after only r
sampling times from when the system last switched to the
capture mode. That lemma bounds the trajectory during both
the first and second phases, and states that this bound goes
to zero as the disturbance and the initial condition go to
zero. The three phases discussed here are defined in the proof
below using k1, k2 and k3 where k1 is the beginning of the
second phase, k2 the beginning of the third phase, and k3 the
beginning of a new first phase.

An illustrative simulation of the proposed controller is given
in Figure 3.

The proofs of Proposition 2 and Theorem 1 will follow the
statements of the technical lemmas below. The proofs of the
technical lemmas are deferred to appendix A.

Lemma 3: Assume that for some time step k′ we have
mode(k′ + 1) = update and pk′ = 0 (i.e. a measurement
update sequence starts at k′ + 1). If ∀k ∈ {k′ + 1, . . . , k′ +
P + 1}, mode(k) 6= capture (i.e. by time step k′ + P
the controller has not switched to the capture mode) then
‖µ‖{k′−r+1+P,...,k′+P} ≤ σ ‖µ‖{k′−r+1,...,k′}.

Lemma 4: There exist constants ζD > 0 and ζµ > 0 with
the following properties: If for some time step k′ we have
mode(k′ + 1) = update and pk′ = 0, and the input is such
that

‖µ‖{k′−r+1,...,k′} >
1

α
ζD
∥∥wd

∥∥
{k′−r+1,k′+P−2} , (20)

then mode(m) = update ∀m ∈ {k′ + 2, . . . , k′ + P − r},
mode(m) = detect ∀m ∈ {k′ + P − r + 1, . . . , k′ + P},
mode(k′ + P + 1) = update, and

‖x̃‖{k′,...,k′+P−1} ≤ ζµ ‖µ‖{k′−r+1,...,k′} . (21)

Lemma 5: Assume that for some time step k′ we
have mode(k′ + 1) = update and pk′ = 0. Let k3 =
min {k′ + P,min {k |mode(k + 1) = capture, k > k′ }}.
There exists a constant ζw > 0 such that if the disturbance
does not satisfy (20), then

‖x̃‖{k′,...,k3−1} ≤ ζw
∥∥wd

∥∥
{k′−r+1,...,k′+P−2} .
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Fig. 3. Simulation of the proposed controller. Simulated here is a two-
dimensional dynamical system: ẋ(t) = [0.1,−1; 1, 0.1]x(t) + [0; 1]u(t) +
[1, 0; 0, 1]w(t), where only the first dimension is observed, y(t) =
[1, 0]x (t), through a quantizer with N = 3. The solid line in the left plot
is the trajectory of the system (starting at x (0) = [1; 0]). The dotted line in
that plot is the state estimate. The dash-dotted lines represent the jumps in
the state estimate after a new measurement is received. The locations of the
trajectory and the state estimate at the first few sampling times are marked by
×. The underlined time indications correspond to the state estimate. The two
plots on the right show time segments of the measured output (Ts = 1s).
The solid line is the unquantized output (y) of the system and the dotted
line is its estimate. The vertical dash-dotted lines depict the single bounded
quantization region. The controller is in the capture mode where these vertical
lines are bounded by arrows facing outward, in the update mode where the
arrows are facing inward, and in the detect mode where the vertical lines are
bounded by small horizontal lines. Looking at both the left plot and the top
right plot, one can observe the initial transient of the system: At t = 3 a
sufficient number (two) of unsaturated measurements were collected and the
controller switches to the update mode; this causes the state estimate to jump
at t = 4 from the origin to ∼ [−1.6; 0.2]; and at t = 5 the state estimate
jumps even closer to the true state. Looking at the bottom right plot, one can
observe the steady-state behavior of the simulation, where an escape of the
trajectory due to a disturbance is detected at t = 119s, and then the trajectory
is recaptured at t = 122s. The design parameters were: P = 6, µ (0) = 0.25,
Ωout = 2, α = 0.02, s = 0.05, K = [0.6,−1.5]. The disturbance followed
the zero-mean normal distribution with standard deviation of 0.2.

Lemma 6: There exist functions δ̃1 : R≥0 × R>0 → R≥0

and T ∗1 : R≥0 × R>0 → R≥0, each nondecreasing in ν
when ρ is fixed, and constants ζC > 0 and ζb > 0, with
the following properties: For any time step k0 such that
mode(k0 + 1) = capture there exists k1 > k0 such that
k1 < k0 + T ∗1

(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
, mode(k1 + 1) =

update, pk1 = 0, ‖x̃‖{k0,...,k1} ≤ δ̃1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
and ‖µ‖k1−r+1,...,k1

≤ µk0Ω
T∗1 (ν;ρ)
out ; the functions δ̃1 and T ∗1

satisfy δ̃1 (ν; ρ) ≤ ρζbΩ
T∗1 (ν;ρ)
out ∀ν, ρ.

Lemma 7: There exist a constant ζs > 0, a class K
function ε, and functions δ̃2 : R≥0 × R>0 → R≥0 and
T ∗2 : R≥0 × R>0 → R≥0 with the following proper-
ties: For any time step k0 such that |x̃k0 | + ζC

∥∥wd
∥∥ ≤

ε (µk0), where ζC was defined in Lemma 6, then k∗
.
=

k0 + T ∗2
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
satisfies ‖x̃‖{k0,...,k∗} ≤

δ̃2
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
, ‖µ‖k∗−r+1,...,k∗ ≤ µk0ζsσ

T∗2 /P

where σ was defined as part of the convergence property,
mode (k∗ + 1) = update and pk∗ = 0; when ρ is fixed the
function δ̃2 (·; ρ) is of class K∞; the functions δ̃2 and T ∗2
satisfy δ̃2 (ν; ρ) ≤ ρζsσT

∗
2 (ν;ρ)/P / ‖C‖ ∀ν, ρ.

Proof of Proposition 2: Assume that t0 = k0Ts for some
k0. We say that an arbitrary sampling time k2 has the SS
properties if mode(k2 + 1) = update, pk2 = 0 and (20) does
not hold with k′ = k2. The proof proceeds in four steps: in
the first step we derive a bound on the trajectory from k0 to
k2; in the second step we derive a bound on the trajectory
from k2 to infinity; in the third step we combine these two
bounds and derive the ISS bound on the estimation error; in
the fourth step we derive the bound on the zoom factor.

Step 1. Assume first that mode (k0) = capture. Let k2 be
the first time step after k0 with the SS properties. If such a time
step does not exist, define k2

.
=∞. By Lemma 6 there exists

k1 ≤ k0+T ∗1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
such that ‖x̃‖k0,...,k1 ≤

δ̃1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
. With Lemmas 6, 3 and 4, we also

have that if k2 > k1 then |x̃k| ≤ ζµµk0Ω
T∗1
outσ
b k−k1P c ≤

ζµµk0Ω
T∗1
outσ

⌊
k−T∗1
P

⌋
∀k ∈ {k1, . . . , k2}. As Lemma 6 also

states that δ̃1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
≤ µk0ζbΩ

T∗1
out, we can

derive |x̃k| ≤ β̃c
(
|x̃k0 |+ ζC

∥∥wd
∥∥ , k − k0;µk0

)
∀k ∈

{k0, . . . , k2} where

β̃c (ν, k; ρ)
.
=

min

{
δ̃1 (ν; ρ) , ρ

(
Ωout
σ1/P

)T∗1 (ν;ρ)

σ
k
P −1 max {ζµ, ζb}

}
.

(22)

If mode (k0) 6= capture then there is a time step k′2, k0 −
P < k′2 ≤ k0, such that mode(k′2 + 1) = update and pk′2 =
0. If in addition (20) does not hold with k′ = k′2, then we
define k2 = k′2, and thus we have, vacuously, |x̃k| ≤ 0 ∀k ∈
{k0, . . . , k2}. If (20) does hold with k′ = k′2, then with k2

defined as the first time step after k0 with the SS properties, we
can write: |x̃k| ≤ ζµµk0σ

⌈
k−k0
P

⌉
∀k ∈ {k0, . . . , k2}. Taking

into consideration that mode (k0) = capture only if µk0 ≥
s, we get |x̃k| ≤ β̃1

(
|x̃k0 |+ ζC

∥∥wd
∥∥ , k − k0;µk0

)
∀k ∈
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{k0, . . . , k2} where

β̃1 (ν, k; ρ)
.
=

{
max

{
β̃c (ν, k; ρ) , ζµρσ

⌈
k−k0
P

⌉}
ρ ≥ s

ζµρσ
⌈
k−k0
P

⌉
ρ < s.

(23)
Assume now that |x̃k0 | + ζC

∥∥wd
∥∥ ≤ ε (µk0) where

ε (·) comes from Lemma 7 and set k2 to be the first
time step after k0 with the SS properties. Then there
exists k∗ = k0 + T ∗2

(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
such that

‖x̃‖k0,...,k∗ ≤ δ̃2
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
. With Lemmas

7, 3 and 4, we also have that if k2 > k1 then

|x̃k| ≤ ζµµk0ζsσ
T∗2 /Pσ

⌊
k−T∗2
P

⌋
∀k ∈ {k∗, . . . , k2}. As

Lemma 7 also gives us that δ̃2
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
≤

µk0ζsσ
T∗2 /P / ‖C‖, we derive ∀k ∈ {k0, . . . , k2}: |x̃k| ≤

β̃2

(
|x̃k0 |+ ζC

∥∥wd
∥∥ , k − k0;µk0

)
where

β̃2 (ν, k; ρ)
.
= min

{
δ̃2 (ν; ρ) , ρζsσ

bk/Pcmax {ζµ, 1/ ‖C‖}
}
.

(24)
For fixed ν and ρ, both limk→∞ β̃1 (ν, k; ρ) = 0 and

limk→∞ β̃2 (ν, k; ρ) = 0. Also, for fixed k and ρ, both
β̃1 (ν, k; ρ) and β̃2 (ν, k; ρ) are continuous and nondecreasing
with respect to ν. However, only β̃2 satisfies β̃2 (0, k; ρ) =
0 ∀k, ρ, and β̃2 is a valid bound on the trajectory only
when |x̃k0 | + ζC

∥∥wd
∥∥ ≤ ε (µk0). Nevertheless, it is pos-

sible to construct a class KL function, β̂ (ν, k; ρ), such that
β̂ (ν, k; ρ) ≥ β̃2 (ν, k; ρ) when ν ≤ ε (ρ) and β̂ (ν, k; ρ) ≥
β̃1 (ν, k; ρ) otherwise. With β̂ (ν, k; ρ) we can write |x̃k| ≤
β̂
(
|x̃k0 |+ ζC

∥∥wd
∥∥ , k − k0;µk0

)
∀k ∈ {k0, . . . , k2}.

Note that all the functions mentioned above are continuous
in ν and ρ, ∀ν ∈ R≥0 and ∀ρ ∈ R>0. They are not,
however, all continuous (or even defined) at ρ = 0 since
limρ↘0 T

∗
1 (ν; ρ) = ∞ for every ν > 0. Nevertheless,

β̂ (ν, k; ρ) is continuous at ρ = 0. This is due to ε be-
ing of class K, which implies that for sufficiently small ρ,
β̂ (ν, k; ρ) = β̃1 (ν, k; ρ) = ζµρσ d(k − k0) /P e.

Step 2. Let k3 be the first time step after k2 such that
mode(k3) = detect and mode(k3 + 1) = capture. Set k3 =
∞ if such a time step does not exist. Lemma 5 gives us that
‖x̃‖{k2,...,k3} ≤ ζw

∥∥wd
∥∥. Let k4 be the first time step after

k3 such that mode(k4 + 1) = update, pk4 = 0 and (20) does
not hold with k′ = k4. Replacing k0 with k3 in the previous
step, we can write

‖x̃‖{k3,...,k4} ≤β̂
(
|xk3 |+ ζC

∥∥wd
∥∥ , k − k3;µk3

)
≤β̂
(
(ζw + ζC)

∥∥wd
∥∥ , 0; s

) .
= γ̃

(∥∥wd
∥∥) .

Since k4 also satisfies the SS properties as does k2, we can
repeat these arguments for future time steps and arrive at
‖x̃‖{k2,...,∞} ≤ γ̂

(∥∥wd
∥∥), where γ̂ (ν)

.
= max {ζwν, γ̃ (ν)}.

Note that γ̂ (·) is of class K∞.
Step 3. Combining the last two steps, we can derive the

first condition for the parametrized ISS property at the discrete
times: for all k ∈ {0, . . . ,∞},

|x̃k| ≤ βe (|x̃k0 | , k;µk0) + γe
(∥∥wd

∥∥ ;µk0
)

where βe (ν, k;µ)
.
= β̂ (2ν, k;µ) and γe (ν;µ)

.
=

β̂ (2ζCν, 0;µ)+ γ̂ (ν). Note that indeed βe and γe are of class

KL and K∞, respectively. The extension from the discrete
analysis to continuous time, with the estimation error defined
as x̃(t)

.
= x̂(t)− x(t) for every t ≥ t0, can be proved along

the lines of [26, Theorem 6]. This proves the first line of (5).
Step 4. To construct the bound on µ we consider the three

phases of the trajectory: initial capture sequence, zoom-in
sequences and subsequent capture sequences. If mode(k0) =
capture we start with µk0 and we grow the zoom factor until
for r successive time steps we have (N − 2)µk > |ỹk|. Thus
at the initial capture sequence we have

‖µ‖ ≤ Ωrout max {µk0 , ‖C‖ ‖x̃‖ / (N − 2)} . (25)

At a zoom-in sequence we may initially enlarge µ by a factor
of ‖µ′‖ with µ′ defined according to (15). However, after this
possible initial enlargement, µ is decreased by a factor of σ
every P steps. At subsequent capture sequences we start with
µk = s and enlarge it again until for r successive time steps
we have (N − 2)µk > |ỹk|. Therefore, we can set δ from (5)
as

δ (ν, µ0)
.
= ‖µ′‖Ωrout max {µ0, s, ‖C‖ ‖x̃‖ / (N − 2)} .

Proof of Theorem 1: With A + BK being Hurwitz,
the stabilizing control law, u = Kx̂, renders the closed-loop
system

ẋ = Ax+Bu+Dw = (A+BK)x+BKx̃+Dw (26)

ISS with respect to the disturbance and the estimation error.
Combining this ISS property with the parameterized-ISS prop-
erty proved in Proposition 2, and applying a cascade argument
similar to what was used to prove [22, Proposition 7.2], we
can conclude that the closed-loop system is parameterized-ISS
with respect to the disturbance.

C. Modeling Errors

We represent modeling errors as A (t) = A0 + ∆A (t) with
only A0 known and ∆A (t) 6≡ 0. It is assumed, though, that
‖∆A (t)‖ ≤ δA for some δA ∈ R≥0 and ∀t ≥ 0. To deal with
such modeling errors the only change needed in the design is
in the stabilizing control law, where K will be chosen such
there exist two positive definite symmetric matrices, P and Q,
for which the following holds:

P (A0 + ∆A+BK) + (A0 + ∆A+BK)
T
P +Q <0,

∀ ‖∆A (t)‖ <δA.
(27)

It is well-known and easy to show using a Lyapunov argument
that if (27) holds then the system (26) has the ISS stability
property with respect to the estimation error and disturbance:

|x (t)| ≤βx (x (t0) , t− t0) + γx,e

(
‖x̃‖[t0,t]

)
+

γx,w

(
‖w‖[t0,t]

)
, ∀t > t0 > 0 (28)

where βx is of class KL and γx,w and γw,x are of class K∞.
Such a stabilizing gain matrix K can be found by using linear
matrix inequality (LMI) techniques [27, §7.2].
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With this stabilizing control law, we derive our second
stability result:

Theorem 2: Assume the controller has the convergence
property and the stabilizing control law is chosen so that
(27) holds for some δA > 0. Then the aggregate state of the
closed-loop system satisfies the local practical ISS property
(6) with ξ =

(
xT , x̃T

)T
for some δA,max > 0, xmax > 0

and wmax > 0.
Proof (sketch): The dynamics of the estimation error

between sampling times is now

˙̃x = Ax̃−∆Ax−Dw. (29)

Therefore its evolution is no longer independent of the state
of the system. The proposed controller in this case will render
the estimation error parameterized-ISS with respect to both
the disturbance and the system’s state:

|x̃ (t)| ≤βe (x̃ (t0) , t− t0;µ (t0)) +

γe,x

(
δA ‖x‖[t0,t] ;µ (t0)

)
+ γe,w

(
‖w‖[t0,t] ;µ (t0)

)
µ (t) ≤γµ

(
‖x̃‖[t0,t] , µ (t0)

)
, ∀t ≥ t0 ≥ 0.

Due to the interleaved dependency of x and x̂ on each
other we can no longer apply the cascade theorem. However,
since x1 which follows (1) is continuous, we can now apply a
variation of the small-gain theorem, Theorem 4 which is given
in Appendix B, and arrive at the result stated in the theorem.

Note that for every fixed µ, γe,x (r, µ) grows faster than
any linear function of r both at r = 0 and at r = ∞. These
super-linear gains are not an artifact of our design. In [28] it
was shown, using techniques from information theory, that it
is impossible to achieve ISS with linear gain for any linear
system with finite data rate feedback.

V. APPROACHING THE MINIMAL DATA RATE

Several papers ([8],[15],[16],[18],[19]) present the same
lower bound on the data rate necessary to stabilize a given
system. This bound, in terms of the bit-rate (R) to be trans-
mitted, is

R > Rmin
.
=

∑
|ηj |≥1 log2 |ηj |

Ts
(30)

where the ηj’s are the eigenvalues of the discrete open-loop
matrix Φ

.
= exp(ATs). Note that (30) was derived as a

necessary bound for asymptotic stability in the disturbance-
free case. Therefore it is necessary for achieving disturbance
rejection in the ISS sense, which reduces to asymptotic sta-
bility when the disturbance is zero. The following discussion
shows that any data rate that satisfies (30) is sufficient for
achieving ISS using our approach.

The main steps for achieving the minimum data rate are:
(1) using a different N at each sampling time; (2) selecting P
large enough, so that the effect of the reduced resolution during
the escape detection mode compared to the measurement
update mode becomes negligible; (3) applying the quantization
separately for each unstable mode of the system.

From Lemma 1 we have that one can choose N to be the
smallest integer such that N > ‖Ad‖. Note that throughout

our algorithm and proofs there is no requirement that N
be the same at every sampling time, as long as the con-
vergence property is satisfied. With a different N at every
sampling time, denoted by Nk, and restricting to the state
feedback case, Lemma 1 can be rephrased with the following
condition replacing (17): There exists P ′ such that for all
k,
∏k+P ′

l=k ‖Ad‖ /Nl < 1. We can therefore choose any
Ñ > ‖Ad‖, where Ñ is the geometric average of the Nk’s,
and still be able to satisfy the convergence property.

For unstable scalar systems where A = a > 0, ‖Ad‖ =
exp (aTs) = η1, and we can then choose any average bit
rate R = 1/Ts log2 Ñ > 1/Ts log2 |ηj |. For multidimensional
systems, when A is diagonalizable with real eigenvalues,
we can apply a one-dimensional quantizer on each unstable
mode of the system with a number of quantization regions
corresponding to the growth rate of that mode. For pairs of
conjugate complex eigenvalues, ηj and ηj+1 = ηj , we can
apply a rotating two-dimensional square quantizer whose rate
of rotation is ∠ηj and its number of quantization regions per
dimension corresponds to a growth rate of |ηj |. This, as well
as extension to non-diagonalizable systems, is explained in
details in [16].

VI. EXTENSION TO NONLINEAR SYSTEMS

The crucial properties of linear systems which are used
in the proof of Theorem 1 are (a) that the continuous,
unquantized, closed-loop system is ISS with respect to the
estimation error and the disturbance, and (b) that the update
law for the estimated state between the sampling times (11) is
such that the estimation error grows between these sampling
times according to

lim
t↗Ts

‖x̃ (kTs + t)‖ ≤λe ‖x̃ (kTs)‖+ λw ‖w‖[kTs,(k+1)Ts]
+

λx ‖x‖[kTs,(k+1)Ts]
(31)

where λe, λw and λx are known constants. For
linear systems these constants are λe = ‖Ad‖,
λw =

∥∥∥∫ Ts0
exp (A0 (Ts − t))Ddt

∥∥∥ and λx =∥∥∥∫ Ts0
exp (A0 (Ts − t)) dt

∥∥∥ δA, which follows easily from
(7). If (31) holds globally, λx = 0 (as in the case where
the exact system model is known), and the number of
quantization regions allows the controller to satisfy the
convergence property, then the aggregate state of quantized
system satisfies the parameterized ISS property.

Neither property is unique to linear systems and both can
also be formulated for nonlinear systems. This leads to a better
conceptualization of our results. Consider a nonlinear system

ẋ(t) = f(x(t),u(t),w(t)) (32)

with y(t) = x(t) (state feedback). State feedback control
laws that render unquantized systems ISS with respect to
either external disturbances or measurement errors have been
proposed for certain nonlinear systems; see for example the
discussions in [5], [14] and the references therein. Designing
state feedback control laws that render unquantized systems
ISS with respect to both external disturbances and measure-
ment errors is still considered an open problem. The two
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closest results, for systems in strict feedback form, appear in
[29, §6.2.2] and [30].

Assume that (32) satisfies the Lipschitz property:

|f(x,u,w)− f(x̂,u, 0)| ≤ Lx|x− x̂|+ Lw|w|,
∀|x| < lx, ∀|x̂| < lx, ∀|w| < lw (33)

for some lx > 0, lw > 0, Lx > 0 and Lw > 0. When the
Lipschitz property holds globally, as in linear systems, lx =
lw = ∞. Assuming the exact system model is known, if we
update our state estimate between sampling times according
to ˙̂x = f (x̂,u, 0), then (31) holds with

λe
.
= eTsLx , λw

.
=

∫ Ts

0

e(Ts−τ)LxdτLw, λx
.
= 0.

(34)
To make the convergence property applicable to state feed-

back nonlinear systems, the only change needed is to redefine

F (µ; k)
.
= λe ‖µ‖{k−r,...,k−1} . (35)

A sufficient condition for the controller to have the conver-
gence property remains λe/N < 1.

The above discussion leads to our third stability result:
Theorem 3: Consider a state feedback nonlinear system:

ẋ(t) = f(x(t),u(t),w(t)), zk = Q (xk; ck, µk) (36)

where f has the Lipschitz property (33), and for which there
exists a static feedback u = k (x) which renders the dynamics
ẋ(t) = f(x, k (x+ e) ,w) ISS with respect to e and w.
If eTsLx/N < 1 then there exists a choice of α and P
with which the controller has the convergence property with
F (µ; k) defined in (35). With this choice of α and P and a
choice of Ωout > eTsLx and s > 0, the aggregate state of the
system will satisfy the parameterized ISS property if it can be
guaranteed that ‖x‖ < lx and ‖w‖ < lw. This indeed can be
guaranteed for |x (0)| < xmax and ‖w‖ < wmax such that

β (xmax, 0; s) + γ (wmax; s) ≤ lx and wmax ≤ lw
(37)

where β and γ come from (19). Therefore the aggregate state
satisfies the local parameterized ISS property. If the Lipschitz
property holds globally, then the aggregate state satisfies the
parameterized ISS property.

A natural question would be what is the necessary number
of quantizations regions needed to achieve ISS for a given
bound on |x (0)| and ‖w‖. Unfortunately, the theorem does
not give a direct answer to this question. Nevertheless, we can
say the following: Given xmax, lw = wmax, lx, Lx and Lw
such that (33) holds, and λe = eTsLx , if

βx (xmax, 0) + γx,w (wmax) +

γx,e

(
max

{
λe

(
xmax +

wmax
λe − 1

)
,

λ3
e

λe − 1
wmax

})
< lx

holds, where βx, γx,e and γx,w are the ISS gains of the
state feedback control law, then there exist appropriate design
parameters P , Ωout, α, N and s with which the closed-loop
system will have the local parameterized ISS property. In this
way we can reach a semi-global result very similar to the
one recently proved in [31], although that paper follows a

somewhat different approach and also allows modeling errors
and measurement disturbances.

The proof of Theorem 3 follows the same lines as the proof
of Theorem 1 and it is therefore omitted. See also [11] for a
similar result but without disturbances.

VII. CONCLUSIONS

In this paper we showed how to achieve input-to-state stabil-
ity with respect to external disturbances using measurements
from a dynamic quantizer. We showed that our technique is
applicable to output feedback, is robust to modeling errors,
and can work with data rates arbitrarily close to the minimum
data rate for unperturbed systems. We also showed that our
technique can be extended to nonlinear systems.

The following are some problems which were raised by
this work, and should be addressed in future research. In
the state feedback case, we show what is the necessary and
sufficient number of quantization regions required for Input-
to-State Stability. In the output feedback case, however, we
can only show that a given number of quantization regions
is sufficient based on which observer is implemented. It is
possible that using another observer a smaller number of
quantization regions will be sufficient. This raises the question
of what is the optimal observer. When addressing this question
one usually needs to consider also the computational resources
that are available for the observer.

In the recent paper [32], the method presented here was
extended to systems with (possibly time varying) delays in
addition to state quantization. Although external disturbances
were not considered, we did rely on the ISS property estab-
lished here after we showed that error signals which arise due
to delays can be regarded as external disturbances.

Our analysis only considers the worst-case scenario, defined
by the bound on the magnitude of the actual disturbance. In
many applications the disturbance can be modeled to follow
a certain distribution which rarely produces the worst-case
disturbance. By utilizing the knowledge of the underlying
distribution, it might be possible to get a more accurate
description of the behavior of the system. It should also be
possible in this case to provide better tools for choosing the
design parameters under different performance requirements.

APPENDIX A: PROOFS OF THE TECHNICAL LEMMAS

Proof of Lemma 1: Assume α satisfies σpi+ α
N ≤ 1 and

for simplicity assume also that P is a multiple of r. Then for
all l ∈ {1, . . . , P/r − 1}:

‖µ′‖lr,...,(l+1)r−1 ≤ σ
l
pi +

l−1∑
m=0

σmpi
α

N

.
= V (l) .

Because σpi < 1 we have that V (l) converges to α
N(1−σ) as

l→∞. We also have

‖µ′‖P−r,...,P−1 ≤ max

{
N

N − 2
σpiV (P/r − 1) +

α

N − 2
,

(
N

N − 2
σpi

)r
V (P/r − 1) +

r−1∑
m=0

(
N

N − 2
σpi

)m
α

N − 2

}
.
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Since we can make V (P/r − 1) arbitrarily small by taking P
to be large enough and α to be small enough, we can make
‖µ′‖P−r,...,P−1 < 1, which satisfies the convergence property.

We will use the following definition in the proofs below:

D̃
.
=


−C −CA−1

d · · · −CA−r+2
d

0 −C · · · −CA−r+3
d

...
...

. . .
...

0 0 · · · −C
0 0 · · · 0

 .
Proof of Lemma 3: Set λ = ‖µ‖{k′−r+1,...,k′}. Between

time steps k′ + 1 and k′ + P , µ is updated according
to (13) or (14). Note that F (µ; k) depends linearly, with
positive coefficients, on µk−r, . . . , µk−1. Therefore, it is easy
to see by induction from k = k′ + 1 to k = k′ + P that
µk ≤ λµ′k−k′+r−1. As we have that condition (16) holds, the
result of the lemma follows.

Proof of Lemma 4: The settings mode(k′+1) = update
and p = 0 imply that for m ∈ {k′ − r + 1, . . . , k′} we had
saturated(m) = false and either mode(m) = capture or
mode(m) = detect. The structure of our quantizer is such
that if saturated(m) = false for some m, then |ỹm| < µm
where ỹm

.
= zm − ym denotes the quantization error. The

observations can be written as

zk−l =CAldxk − C
l∑
i=1

A−id u
d
k−l+i−1− C

l∑
i=1

A−id w
d
k−l+i−1

+ ỹk−l. (38)

Since the state estimate (10) was chosen so that x̂k = xk in
the absence of measurement errors and disturbances, we get
together with (38) that

x̃+
k = G

 ỹk−r+1
...
ỹk

+GD̃

 wd
k−r+1

...
wd
k−1

 . (39)

When taking the next measurement at time step k + 1, the
distance between the real output, yk+1, and the center of the
quantizer Cx̂−k+1 is∣∣yk+1 − Cx̂

−
k+1

∣∣ =
∣∣CAdx̃+

k + Cwd
k

∣∣ ≤
F (µ; k + 1) +

∥∥∥[CAdGD̃ |C]∥∥∥ ∥∥wd
∥∥

[k′−r+1,k]
. (40)

Given that (20) holds with

ζD
.
=
∥∥∥[CAdGD̃ |C]∥∥∥ ,

we have from (13) that∣∣yk+1 − Cx̂
−
k+1

∣∣ ≤ Nµk+1. (41)

The structure of our quantizer guarantees in this case that∣∣ỹk+1

∣∣ ≤ µk+1. We can now repeat these arguments and show
that (39)–(41) holds for all k ∈ {k′, . . . , k′ + P − r}.

At time steps k′ + P − r the controller will switch to
mode(k′+P −r+1) = detect, and we will have for l = P −
r+1 that

∣∣yk′+l − Cx̂−k′+l∣∣ ≤ (N − 2)µk′+l. This guarantees
that both

∣∣ỹk′+l∣∣ ≤ µk′+l and saturated(k′ + l) = false,

thus mode(k′ + l + 1) = detect. Again, we can repeat these
arguments for l ∈ {P − r+ 2, . . . , P} with the exception that
for l = P the controller will set mode(k′+ l+ 1) = update.

Based on (39) we can bound the estimation error for l ∈
{0, . . . , P − 1} as∣∣x̃+

k′+l

∣∣ ≤‖G‖ ‖µ‖{k′−r+1,...,k′+l}+∥∥∥GD̃∥∥∥∥∥wd
∥∥
{k′−r+1,...,k′+l−1}

≤ζµ ‖µ‖{k′−r+1,...,k′}

where

ζµ
.
= ‖G‖ ‖µ′‖{0,...,r+P−2} +

∥∥∥GD̃∥∥∥ α

ζD
.

Note that in the definition of ζµ we used the constants µ′’s
defined in (15).

Proof of Lemma 5: If (20) does not hold, then it will not
necessarily be true that ‖ỹk‖ ≤ µk, ∀k ∈ {k′ + 1, . . . , k′ +
P − r}. However, since now we have that

‖ỹ‖{k′−r+1,...,k′} ≤‖µ‖{k′−r+1,...,k′}

≤ 1

α
ζD
∥∥wd

∥∥
{k′−r+1,k′+P} (42)

we can still bound the estimation error as follows. For k ∈
{k′, . . . , k3} we have∥∥x̃+

k

∥∥ ≤‖G‖ ‖ỹ‖{k−r+1,...,k}+∥∥∥GD̃∥∥∥∥∥wd
∥∥
{k−r+1,...,k−1}∥∥ỹk+1

∥∥ ≤‖CAd‖ ∥∥x̃+
k

∥∥+ ‖C‖
∣∣wd

k

∣∣ .
Iterating these two inequalities and combining with (42) we
get
∣∣x̃+
k

∣∣ ≤ ζw ∥∥wd
∥∥
k′−r+1,...,k−1

where

ζw
.
= ‖G‖ ‖CAdG‖P

1

α
ζD +

∥∥∥GD̃∥∥∥+

P∑
m=1

‖G‖ ‖CAdG‖m−1
(∥∥∥CAdGD̃∥∥∥+ ‖C‖

)
.

Proof of Lemma 6: Let k1 be the first time step after k0

such that mode(k1 +1) = update (let k1 =∞ if no such time
step exists). We now have that for all l ∈ {0, . . . , k1 − k0}

∣∣x̃−k0+l

∣∣ ≤‖Ad‖l |x̃k0 |+ l−1∑
m=0

‖Ad‖l−m−1 ∣∣wd
k0+m

∣∣
≤‖Ad‖l |x̃k0 |+

‖Ad‖l − 1

‖Ad‖ − 1

∥∥wd
∥∥

≤‖Ad‖l
(
|x̃k0 |+ ζC

∥∥wd
∥∥) (43)

where ζC
.
= 1
‖Ad‖−1 . Now, the zoom factor grows as µk0+l =

µk0Ωlout. Define

T ∗1 (ν; ρ)
.
= max

{
0, logΩout/‖Ad‖

(
‖C‖ ν

ρ (N − 2)

)
+ 1

}
+r−1

and note that when ρ is fixed, T ∗1 (·; ρ) is a nonde-
creasing function. Assuming mode(k) = capture ∀k ∈
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{
k0 + 1, . . . , k0 +

⌊
T ∗1
(
|xk0 |+ ζC

∥∥wd
∥∥ ;µk0

)⌋}
, we will

have∣∣∣∣yk0+bT∗1 c−r+1 − Cx̂
−
k0+bT∗1 c−r+1

∣∣∣∣ ≤ ‖C‖ ∣∣∣∣x̃−k0+bT∗1 c−r+1

∣∣∣∣
≤ (N − 2)µk0+bT∗1 c−r+1.

Thus saturated(k0 + bT ∗1 c − r + 1) = false as well as
saturated(k0 + bT ∗1 c + l) = false for l = −r + 2, . . . , 0
which guarantees that k1 ≤ k0 + T ∗1 < ∞ where k1 is the
first time step after k0 such that mode (k1 + 1) = update and
pk1 = 0. Using (43) we can bound the estimation error until
the controller switches to the measurement update mode at k1

by

‖x̃‖{k0,...,k1} ≤δ̃1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
δ̃1(ν; ρ)

.
=‖Ad‖T

∗
1 (ν;ρ)ν.

Note also that δ̃1
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
≤

µk0ζbΩ
T∗1 (|x̃k0 |+ζC‖wd‖;µk0)
out where ζb

.
= (N−2)

‖C‖ .
Proof of Lemma 7: Assume first that mode(k0) =

capture and consider the case |x̃k0 | + ζC
∥∥wd

∥∥ ≤ µk0
‖C‖ .

Following the same arguments as in Lemma 6 which led to
(43), we can write for l ∈ {1, . . . , r}:

‖C‖ |x̃k0+l| ≤ ‖C‖ ‖Ad‖l
(
|x̃k0 |+ ζC

∥∥wd
∥∥)

≤µk0Ωlout = µk0+l.

This implies that if mode(k0) = capture, then at a sampling
time not later than k0 + r the controller will switch to
the measurement update mode. If for some time step k the
following holds∣∣yk − Cx̂−k ∣∣ ≤ ‖C‖ ∣∣x̃−k ∣∣ ≤ µk (44)

then the output from the quantizer will be such that zk =
c = Cx̂−k . If for some time step k′ (44) is true ∀k ∈
{k′ − p, . . . , k′}, and x̂+

k′ is updated with G(z;ud; k′), then
we will have x̂+

k′ = x̂−k′ . This implies that x̃k′ = Adx̃k′−1 +
wd
k′−1. In turn, this means that as long as (44) holds ∀l ∈
{0, . . . , k∗ − k0}, even if mode(k∗) 6= capture, then so does
(43) ∀l ∈ {0, . . . , k∗ − k0}.

Now define

ξ(ν; ρ)
.
=

(
1

ρς

) log(‖Ad‖P )
log(σ)−log(‖Ad‖P )

(‖C‖ ν)

log(σ)

log(σ)−log(‖Ad‖P )

T ∗2 (ν; ρ)
.
= P

⌊
logσ

(
ξ(ν; ρ)

ρς

)⌋
ς
.
= min
k∈{r,...,r+P−1}

µ′(k) ≤ σ.

Note that in the definition of ς we use the µ′’s defined in (15)
and we assume without loss of generality that ς > 0. Assume
also that |x̃k0 | + ζC

∥∥wd
∥∥ is sufficiently small such that

T ∗2
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
≥ r + P . We defined ξ and T ∗2

such that we will have for all k ∈ {k0, . . . , k0 + T ∗2 (‖w‖)}

µk ≥µk0ςσT
∗
2 (|x̃k0 |+ζC‖wd‖;µk0)/P

>ξ
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
(45)

and

‖C‖ ‖x̃‖{k0,...,k0+T∗2 (|x̃k0 |+ζC‖wd‖;µk0)}

≤ ‖Ad‖T
∗
2 (|x̃k0 |+ζC‖wd‖;µk0) ‖C‖

(
|x̃k0 |+ ζC

∥∥wd
∥∥)

≤

(
ξ
(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
µk0ς

) log(‖Ad‖P )
log(σ)

‖C‖×(
|x̃k0 |+ ζC

∥∥wd
∥∥) = ξ

(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
. (46)

In deriving the first inequality in (46) we used (43) to bound
the estimation error – even though it is not true that mode(k0+
l) = capture ∀l < T ∗2 , we can still use (43) since (45) and
(46) imply that (44) holds. The proof is completed by setting

δ̃2 (ν; ρ)
.
=
ξ (ν; ρ)

‖C‖
, ζs

.
= Ωrout/ς (47)

and letting ε (·) > 0 be any class K function such
that ε (ρ) ≤ ρ

‖C‖ and T ∗2 (ε (ρ) ; ρ) ≥ r + P . Note
that the function δ̃2 (·; ρ) is a class K∞ function for
each fixed ρ, and that δ̃2

(
|x̃k0 |+ ζC

∥∥wd
∥∥ ;µk0

)
≤

µk0ζsσ
T∗2 (|x̃k0 |+ζC‖wd‖;µk0)/P / ‖C‖.

APPENDIX B: SMALL-GAIN THEOREM FOR LOCAL
PRACTICAL PARAMETERIZED ISS

The following is a modification of the small-gain theorem
([23, Theorem 2.1]). It states that the interconnection of an
ISS system and a parameterized ISS system, under a small-
gain condition, results in a local practical ISS system. The
modification is due to the additional third signal µ, that does
not have an ISS relation with respect to the disturbance, and
due to the fact that the small-gain condition only holds locally.
We believe the results of this appendix have independent
interest beyond the scope of proving Theorem 2. Indeed, they
had already been used (in a different context) in [32].

Theorem 4: Consider two systems whose state variables, x1

and x2, satisfy the ISS and the parameterized ISS properties,
respectively:

|x1 (t)| ≤β1 (|x1 (t0)| , t− t0) + γ1

(
‖x2‖[t0,t]

)
+

γ
(
‖w‖[t0,t]

)
|x2 (t)| ≤β2 (|x2 (t0)| , t− t0;µ (t0)) +

γ2

(
δ ‖x1‖[t0,t] ;µ (t0)

)
+ γ

(
‖w‖[t0,t] ;µ (t0)

)
µ (t) ≤γµ

(
‖x2‖[t0,t] , µ (t0)

)
, ∀t ≥ t0 ≥ 0.

(48)

Assume the first trajectory, x1, is continuous. Then the
interconnected system will satisfy the local practical input-
to-state stability property: ∃δmax, xmax, wmax ∈ R>0 such
that ∀δ ≤ δmax, ∀ |x1 (0)| < xmax, ∀ |x2 (0)| < xmax,
∀ ‖w‖[0,t] < wmax,

|x1 (t)| ≤βic
(∣∣∣∣( x1 (t0)

x2 (t0)

)∣∣∣∣ , t− t0)+ γic

(
‖w‖[t0,t]

)
+

λ (δ) (49)



13

for all t ≥ t0 ≥ 0 where βic is of class KL and γic and λ are
of class K∞.

The proof of Theorem 4 will come after the following
intermediate results.

Lemma 8: Assume for some t0 a signal x satisfies

|x (t)| ≤ d+ γ
(
‖x‖[t0,t]

)
, ∀t ≥ t0, (50)

and
lim
τ↗t
|x (τ)| ≥ |x (t)| , ∀t ≥ t0 (51)

(any discontinuity in the signal results in a decrease of the
norm of the signal). Assume further that for some r2 > r1 > 0,
λ < 1

γ (r) < λr ∀r ∈ [r1, r2] (52)

and
xmax

.
= max

{
r1,

1

1− λ
d

}
< r2. (53)

Then given that |x (t0)| ≤ xmax, we have

‖x‖[t0,∞) ≤ xmax.

Note that in particular every continuous signal satisfies (51).
This lemma is stated more generally than what is needed to
prove Theorem 4. In the proof of Theorem 4 it is applied on the
state x1 which is assumed to be continuous. When Theorem
4 is used to prove Theorem 2, x1 corresponds to the state
of the system, which is indeed continuous. The state x2, on
the other hand, corresponds to the estimation error which may
be discontinuous at sampling times. We note that in the state
feedback case the estimation error does satisfy (51) due to the
construction of our quantizer, and so we could have applied
Lemma 8 on x2 instead of on x1. This observation will be
useful when considering other extensions such as delays [32].

Proof of Lemma 8: Assume on the contrary that there
exists t′ ≥ t0 such that |x (t′)| > xmax. Choose ε =

xmax + min
{
‖x‖[t0,∞) − xmax, r2 − xmax

}
/2 so that t =

inf
{
τ ≥ t0

∣∣ |x (τ)| ≥ ε
}

is well-defined. By definition of t,
‖x‖[t0,t) ≤ xmax+ε and from |x (t0)| ≤ xmax and (51), t > t0
and |x (t)| = xmax +ε. Thus ‖x‖[t0,t] = xmax +ε < r2. From
(50) and (52) we can now write ‖x‖[t0,t] ≤ d+λ ‖x‖[t0,t], and
conclude using (53) that ‖x‖[t0,t] ≤ xmax. This contradicts
‖x‖[t0,t] = xmax + ε.

A corollary of the small-gain theorem [23, Theorem 2.1]
gives us the following local result:

Lemma 9: Given β1, β2 ∈ KL, γ1,x, γ2,x ∈ K∞, and ρ <
1, there exists β ∈ KL and γ, λ1, λ2, λ0 ∈ K∞ such that for
every r1 > r0 > 0 which satisfy the small-gain condition

γ1,x (γ2,x (r)) ≤ ρr, ∀r ∈ [r0, r1] ,

the following property holds. For every three signals x1, x2,
w satisfying ∀t ≥ t0 ≥ 0

|x1 (t)| ≤β1 (|x1 (t0)| , t− t0) + γ1,x

(
‖x2‖[t0,t]

)
+

γ1,w

(
‖w‖[t0,t]

)
+ d1

|x2 (t)| ≤β2 (|x2 (t0)| , t− t0) + γ2,x

(
‖x1‖[t0,t]

)
+

γ2,w

(
‖w‖[t0,t]

)
+ d2

for some γ1,w, γ2,w ∈ K and d1, d2 ∈ R≥0, if it can be
guaranteed that ‖x1‖[0,∞] ≤ r1, then ∀t ≥ t0 ≥ 0:

|x1 (t)| ≤β
(∣∣∣∣ x1 (t0)

x2 (t0)

∣∣∣∣ , t− t0)+ γ
(
γ1,w

(
‖w‖[t0,t]

))
+

γ
(
γ2,w

(
‖w‖[t0,t]

))
+λ1 (d1)+λ2 (d2)+λ0 (r0) .

Proof of Theorem 4: Choose arbitrary r1 > r0 > 0,
δ′max > 0, µ̄ such that µ̄ > γµ (γ2 (δ′maxr1;µ(0)) ;µ(0)), ρ <
1 and consider the following small-gain condition:

γ1 (γ2 (δr, µ)) ≤ ρr, ∀r ∈ [r0, r1] ⊂ R≥0, ∀µ ∈ [0, µ̄] .
(54)

For every fixed µ, γ1 (·) and γ2 (·;µ) are of class K∞.
Thus for every r ∈ [r0, r1] and every µ ∈ [0, µ̄]
there exists a small enough but strictly positive δ (r, µ)
for which the small-gain condition holds. Set δmax

.
=

min

{
δ′max,minr∈[r0,r1]

µ∈[0,µ̄]

δ (r, µ)

}
> 0.

Since ρ in (54) is strictly smaller than 1, there exist α > 0
and ρ′ < 1 such that

γ1 ((1 + α) γ2 (δmaxr;µ)) ≤ ρ′r, ∀r ∈ [r0, r1] , ∀µ ∈ [0, µ̄] .
(55)

For all nondecreasing functions γ and all α > 0, a > 0 and
b > 0, we have γ (a+ b) ≤ γ ((1 + α) a) + γ ((1 + 1/α) b).
Using this and (55) we can derive ∀t ≥ 0,

|x1(t)| ≤β1 (|x1 (0)| , 0) + γ (‖w‖) +

γ1

(
β2 (|x2 (0)| , 0;µ (0)) + γ2

(
δmax ‖x1‖[0,t]

)
+

γ (‖w‖ ;µ (0))

)
≤β1 (|x1 (0)| , 0) +

γ1

(
(1 + α) γ2

(
δmax ‖x1‖[0,t] ;µ (0)

))
+ γ (‖w‖)

γ1

((
1 +

1

α

)
×

(β2 (|x2 (0)| , 0;µ (0)) + γ (‖w‖ ;µ (0)))

)
.

Define

s∞ (|x1 (0)| , |x2 (0)| , µ (0) , ‖w‖) .
=

1

1− ρ′

(
(β1 (|x1 (0)| , 0) + γ (‖w‖)) +

γ1

((
1 +

1

α

)
(β2 (|x2 (0)| , 0;µ (0)) + γ (‖w‖ ;µ (0)))

))
.

By the choice of µ̄, it is always possible to find smax < r1,
xmax > 0, wmax > 0 such that

s∞ (|x1 (0)| , |x2 (0)| , µ (0) , ‖w‖) ≤ smax ≤ r1,

γµ
(
β2 (|x2 (0)| , 0;µ (0)) +

γ2 (δmaxsmax;µ (0)) + γ (‖w‖ ;µ (0)) , µ (0)
)
< µ̄
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∀ |x1 (0)| < xmax, ∀ |x2 (0)| < xmax, ∀ ‖w‖[0,t] < wmax.

(56)

Given that (56) holds, we can use Lemma 8 to get
‖x1‖[0,∞)] ≤ smax. Using (48) we can also derive the bound

‖µ‖ ≤ γµ
(
β2 (|x2 (0)| , 0;µ (0)) + γ2 (δmaxsmax;µ (0)) +

γ (‖w‖ ;µ (0)) , µ (0)
)
< µ̄.

And with this, we can write

|x1 (t)| ≤β1 (|x1 (t0)| , t− t0) + γ1

(
‖x2‖[t0,t]

)
+

γ
(
‖w‖[t0,t]

)
|x2 (t)| ≤ max

µ∈[0,µ̄]
β2 (|x2 (t0)| , t− t0;µ) +

max
µ∈[0,µ̄]

γ2

(
δmax ‖x1‖[t0,t] ;µ

)
+

max
µ∈[0,µ̄]

γ
(
‖w‖[t0,t] ;µ

)
for all t ≥ t0 ≥ 0. Note that for every fixed µ ∈ R≥0

the function β2 (·, ·;µ) is a function of class KL and the
functions γ2 (·;µ) and γ (·;µ) are of class K∞. They are
also all continuous in µ. Thus taking the maximum of these
functions over µ is well defined and does not change their
KL/K∞ characteristics. Note that we can actually satisfy the
following small-gain condition ∀δ ≤ δmax:

γ1 (γ2 (δr, µ)) ≤ ρr, ∀r ∈ [λ (δ) , r1] ⊂ R≥0, ∀µ ∈ [0, µ̄] .

where λ ∈ K. Lemma 9 now gives us (49).
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