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Abstract—We consider here the problem of detecting changes
in the status of switching devices, circuit breakers in partic-
ular, in distribution networks. The lack of measurements in
distribution networks compared to transmission networks is
the main challenge of this problem. Using expected values of
power consumption, and their variance, we are able to quickly
calculate the confidence level of identifying the correct topology,
or the current status of switching devices, using any given
configuration of real time measurements. This allows to compare
between different configurations in order to select the optimal
one. The main approach we propose relies on approximating
the measurements as normal distributed random variables, and
applying the maximum likelihood principle. We also discuss an
alternative based on support vectors. Results are demonstrated
using the IEEE 123 buses distribution test case.

I. INTRODUCTION

The concept of electric power system state estimation was
initially applied to transmission networks to determine the
best estimate of node voltages, generator power outputs, load
demands, and branch power and current flows at a given
point in time based on real-time telemetered measurements
[1]. This application has generally assumed imperfect but
highly redundant measurements, as well as exact power system
model topology and electrical parameters. Network topology
estimation is an integral part of state estimation and a critical
component of modern Energy Management Systems (EMS) or
Distribution Management Systems (DMS). The conventional
network topology processing (NTP) function monitors the
statuses of switching and switchable devices, and determines
the model input to the state estimator [2]. Circuit breaker
statuses, isolator switch statuses, fuses statuses, and trans-
former tap positions are examples of real-time inputs used
by the network topology processor. A conventional NTP
determines the connectivity of the electrical network, taking
as input a complete model of the network, comprising of
nodes and switching devices. The NTP reduces the node-
switching-device model to a “bus-branch” model, where the
concept of bus defines a maximal subnetwork interconnecting
nodes and closed switching devices only. The objective of the
conventional NTP is to eliminate all switching devices from
the network model, by instantiating their “open” or “closed”
statuses. The NTP achieves this instantiation by processing

the switching device user-defined, measured, scheduled or
normal status, as available in this order of precedence. The
conventional state estimation sub-program then solves and
analyzes the resulting bus-branch model. Undetected switching
device status errors during estimation show up as analog
measurement errors in the solution, which are difficult to
distinguish from actual analog measurement errors [3]. Hence,
reliable and prompt detection of the switching device statuses
is crucial for accurate state estimation. The output of the state
estimator is a critical input to nearly all other network analysis,
security, control and stability assessment applications.

In distribution grid management, a critical task of a system
operator is to take quick actions to restore continuity of electric
power supply following forced outages. For many distribution
networks, however, the measurement redundancy is so low that
the first and often only indications of an outage are telephone
calls from customers reporting loss of supply. In the mostly
radial topologies of distribution network, the opening of a
normally-closed switching device generally results in some
loss of electric power supply. Clearly, the analysis performed
by aggregating and mapping multiple customer calls into a
suspected common network device, such as a fuse, which is
then suspected to be open, is an instance of network topology
estimation. Many existing outage management system (OMS)
are still based on the process of call aggregation, which
can take from tens of minutes to hours (if happens at night
for example) to identify the culprit device. Any automatic
procedure that will dramatically reduce the detection time will
lead to a much better quality of service and higher revenues
to utility companies.

In typical distribution systems, at least in the current state
of low penetration of distributed energy sources and commu-
nication devices, estimating the network topology is probably
more important than estimating the analog variables [4].

That said, the tools for the detection of circuit breakers sta-
tus in transmission networks do not apply to distribution net-
works. As the main goal in transmission networks is full state
estimation, there is already a redundancy of measurements to
state variables in the range of 1.7 to 2.2 (redundancy factor)
[2]. In contrast distribution networks today may have only
few measurements at the substation. On the other hand, while



distribution networks usually have many more buses compared
to transmission networks, relatively they have substantially
fewer circuit breakers. Equipping every circuit breaker with
a sensor would thus allow for immediate detection of the
status while still using few measurements and certainly less
than is needed for state estimation. We argue that with the
decrease in the cost of sensors and communication, and the
potential benefit to utility companies, there is room for adding
more sensors in places other than the substation. Through this
work we aim to provide a tool for optimizing the location of
sensor placement, allowing for the detection of the status of
all the circuit breakers while using fewer measurements than
the number of such breakers.

While we don’t provide an automatic tool for optimal place-
ment of sensors, we provide a tool that given the placement of
sensors, quickly reveals at what confidence one can detect the
status of breakers. This then allows to compare easily several
configurations of sensors placement, and select the one with
the highest level of confidence.

The remaining sections are organized as follows. Section II
presents the formulation of the proposed network topology
identification problem. Section III outlines the steps we pro-
pose to take in order to address this problem. Section IV
discusses an alternative approach that we investigated, using
support vectors. Results using an IEEE PES 123-bus system
are shown in Section V.

II. PROBLEM FORMULATION

We are given a power network structure which includes
buses, lines, the lines’ impedance between the connected
buses, the lines’ admittance to the ground, the buses’ admit-
tance to the ground, the position of circuit breakers, and the
nominal position of the breakers. We are also given a set of
real time measurements which may include voltage, current
and power flow readings. Finally, we are given the mean
and covariance of the power injection (or extraction) for all
buses except one, denoted as the slack bus. For distribution
networks it is customary to choose the substation connecting
the distribution network to the transmission network as the
slack bus. Different sets of mean and covariance are expected
for different times of the day (morning, afternoon, evening
and night), as well as for different seasons. The objective is
to find the breakers’ actual position from the measurements,
or identify the current network topology. Our goal is to
measure the confidence of this identification, or in other words,
calculate the probability of identifying one topology as the
current one, when in fact it is not.

For any given topology T , which includes the breakers’
position, we use LT to denote the set of buses which have
direct or indirect connection to the slack bus. We use the
notation |LT | to denote the number of such buses. As we
focus on distribution networks, we assume that buses with no
connection to the slack bus (islanding) have zero voltage. We
use xT to denote the current state of the network. The state of
the system includes the real and imaginary parts of the voltage
at every bus that is in LT . Following [5], if two or more buses

are connected to each other through a zero impedance line
(or closed circuit breaker), then since they all have the same
voltage, we have two state variables representing the real and
imaginary parts of the voltage, and additional state variables
representing the real and reactive power flow between the
buses. Two zero-impedance lines connecting the same two
buses are considered as one line. In any case the degrees of
freedom in the system become 2 |LT | (xT ∈ R2|LT |).

Remark: In this section and in the subsequent section, we
consider every phase of a bus in a 3-phase system as a separate
bus.

We use the classic convention and classify our mea-
surements as real time measurements and as pseudo-
measurements. Real time measurements are measurements we
get from sensors readings. We use y ∈ Rm where m is the
number of real time measurements to denote the real time
measurements, and define the nonlinear measurement function
f such that y = fT (xT ). Pseudo-measurements are known
constraints given by the topology of the network. For example,
a bus to which no generator or load is connected, has zero
real and reactive power injection (two pseudo-measurements).
The voltage and the angle (which is arbitrarily set to 0) of
the slack bus are another two pseudo-measurements which we
use. We define the nonlinear constraint function g such that
gT (xT ) = 0 if and only if the state xT satisfies the pseudo-
measurements. Let r be the number of pseudo-measurements.
We define n′ as the degrees of freedom remaining after
constraining the system to the pseudo-measurement. If all the
pseudo-measurements are independent of each other (i.e. any
single pseudo-measurement can be unsatisfied while all other
pseudo-measurements are satisfied), then n′ = 2 |LT | − r.

If the number of real time measurements is larger than n′,
then in the absence of any measurements errors, each valuation
of the measurements can only correspond to one topology.
Another way to say this is that in this case{

y ∈ Rm
∣∣∣∃xT ∈ R2|LT | : fT (xT ) = y, gT (xT ) = 0

}
is a manifold of dimension strictly less than m and two such
manifolds intersect each other over a set of measure zero. In
such case theoretically one can identify the correct topology
with a confidence level of 100%. In practice the computational
issue of finding the right topology is still a major challenge
(see [6] for a recent attempt at addressing this issue), and in
addition measurement errors can bring the confidence level
down. Nevertheless, here we are interested in the case where
m < n′. While in transmission networks typical ratio of
measurements to state variables is 1.7–2.2 [2], in distribution
networks the number of measurements is indeed much lower
than the number of buses.

Let zT ∈ R2|LT | be a vector consisting of the real and
imaginary parts of the slack bus voltage, and the 2 (|LT | − 1)
real and reactive power injections at all other buses in LT . Let
fz,T be the function such that zT = fz,T (xT ) ∀xT . While
it is not hard to synthesize special cases where the following
is not true, in practice fz,T is almost always one-to-one. This



implies there exists a function hT such that fz,T (hT (zT )) =
zT ∀z.

Let z ∈ R2n be the vector consisting of the real and
imaginary parts of the slack bus voltage, and the 2 (n− 1)
real and reactive power injections at all other buses. Let
I ∈ R2n×2n be the identity matrix, and let IT ∈ R2|LT |×2n

be a matrix derived from I by keeping only the rows whose
indices are the same as the indices of the components of
z corresponding to buses in LT . Thus if T is the active
topology, then zT = IT z. By the problem description we are
given the mean and covariance matrix of all real and reactive
power injections except for the slack bus. The mean and the
variance of the power injection for buses to which no load
or generator are connected will both be zero naturally. Let
µz ∈ R2n be a vector whose first two components are the
real and imaginary parts of the slack bus, and its remaining
components are the mean and reactive power injection for
all other buses. Similarly, let Λz ∈ R2n×2n be a matrix
whose first two rows and first two columns are zeros, and its
bottom right 2 (n− 1)× 2 (n− 1) block equal the covariance
matrix of the power injections. We can therefore, by assuming
normal distribution, define the probability distribution function
ρ (·;µz,Λz) : R2n → R>0 using µz and Λz . We then
say that z follows the normal distribution using the notation
z ∼ N (µz,Λz). We note that µz and Λz do not depend on the
topology. They represent the variation in demand or generation
assuming the whole system is connected (no islanding). They
do not represent the actual power delivered, which may be
zero if the corresponding bus is disconnected from the slack
bus.

Let c : Rm → {1, . . . , p} be the topology identification
function, where p is the number of possible topologies:
T1, . . . , Tp. We define the confidence level as:

1−max
i

Prob {c (fTi (hTi (IT z))) 6= i |z ∼ N (µz,Λz)} .
(1)

III. MINIMIZING CLASSIFICATION ERRORS

Our first goal is for each topology T , to approximate the
random variable y = fT (hT (IT z)) as a normal distributed
random variable. By linearizing, we can write

y ≈ fT (hT (IT µz)) +AT (z − µz)

where

AT
.
=
∂fT
∂xT |xT =hT (IT µz)

∂hT
∂zT |zT =IT µz

IT ,

and approximate y as y ∼ N (µy,T ; Λy,T ) where

µy;T = fT (hT (IT µz))

and
Λy;T = AT ΛzA

T
T .

While the functions fT and fz,T can be written explicitly as
functions of xT , and thus ∂fT /∂xT can be easily calculated,
this is not true for hT . Yet, since ∂fz,T /∂xT is full rank

as shown in [7, Proposition 2] whenever fz,T is one-to-one,

∂hT /∂zT |zT =
(
∂fz,T /∂xT |xT =hT (zT )

)−1
.

Define

ei = Prob {c (fTi (hTi (IT z))) 6= i |z ∼ N (µz,Λz)}
ẽi = Prob {c (y) 6= i |y ∼ N (µy,Ti ,Λy,Ti)}

By our definition of confidence level (1), we would have
wanted to minimize maxi ei. Due the complexities arising
from the nonlinearities, instead we would focus on minimizing
maxi ẽi. However, even for that we are not aware of a viable
solution. Therefore we will minimize

∑
i ẽi for which the

solution is the maximum likelihood (ML):

c (y) = arg max
i
ρ (y;µi,Λi) (2)

where we used for short µi
.
= µy,Ti and Λi

.
= Λy,Ti . To see

why using (2) indeed minimizes
∑
i ẽi, simply note that∑

i

ẽi =
∑
i

∫
{y∈Rm|c(y)6=i}

ρ (y;µi,Λi) d y

=

∫
Rm

∑
i

Ic(y)6=iρ (y;µi,Λi) d y (3)

where Ia(y) (y) is the indicator function which is equal to one
if the conditional statement a(y) is true and equal to zero if
it is false.

Calculating (3) directly with c as defined in (2) by in-
tegrating the normal density distribution function ρ can be
done numerically, but the computational complexity grows
exponentially with the dimension of the measurement space,
m, if accuracy is to be maintained. A good alternative is then
to randomly generate enough samples of y for each topology
i, and count for how many of these sample, c (y) 6= i. The
computational complexity of this approach is still linear in the
number of topologies, which in turn can be exponential in the
number of switches. However, it now grows polynomially with
the measurement space dimension.

A. Technicalities

In computing ∂f
∂x , we found it is easier to use Cartesian (real

and imaginary) coordinates rather the polar (magnitude and
angle) coordinates. Let x1R be the section of x corresponding
to the 3 real parts of the voltages of bus 1 in a 3-phase system.
Let x1I be the imaginary counterpart. Let Y = 1/Z, Y,Z ∈
C3×3, be the complex admittance matrix of the line connecting
bus 1 and bus 2, and ReY and ImY its real and imaginary
part, respectively. The complex current flowing from bus 1 to
bus 2 is given by:

I = Y (x2R − x1R + j (x2I − x1I))

where here j =
√
−1. The power flow exiting bus 1 toward

bus 2 is P1 = (x1R + jx1I) · Ī , P1 ∈ C3, where · is element-



wise multiplication and Ī is the conjugate of I . Thus,

∂ ReP1

∂x1R
= diag (ReY (x2R − x1R)− ImY (x2I − x1I))−

diag (x2R) ReY − diag (x1I) ImY,

∂ ReP1

∂x2R
= diag (x2R) ReY + diag (x1I) ImY,

with similar expressions for ∂ ReP1/∂x1I , ∂ ImP1/∂x1R,
∂ ImP1/∂x1I , ∂ ReP1/∂x2I , ∂ ImP1/∂x2R, ∂ ImP1/∂x2I ,
where diag (x) is a matrix whose diagonal is the vector x
and it is zero outside its diagonal. Note that by following this
way we do not constrain ourselves to the standard linearization
technique involving the decoupling of the ‘voltage angle’-‘real
power’ and ‘voltage magnitude’-‘reactive power’ dependen-
cies. Power injections are then just linear combinations of the
lines power flows.

For power flow calculation, or solving for x = hT (z) for
which there is no explicit expression, we used the standard
Newton-Raphson method, updating

x̂k+1 = x̂k +

(
∂fz
∂x |x=x̂k

)−1
(z − fz (x̂k)) (4)

through several iterations until convergence.

IV. AN ALTERNATIVE APPROACH

We report here an alternative approach to the maximum
likelihood method, an approach we investigated during this
research but found to be inferior to the ML method.

For each pair of topologies, i and j (i 6= j), we define the
identification function cij : Rm → {i, j} similarly to c except
that it only distinguishes between topologies i and j. We then
construct c as:

c (y) = i if and only if ∀j 6= i : cij (y) = i (5)

With this we can lower bound 1−maxi ẽi which itself is an
approximation to (1) = 1−maxi ei as

1−max
i

∫
∪j 6=i{y∈Rm|cij(y)=j }

ρ (y;µi,Λi) d y

≥ 1−max
i

∑
j

∫
{y∈Rm|cij(y)=j }

ρ (y;µi,Λi) d y. (6)

To simplify the calculation of this lower bound we construct
cij using some αij ∈ Rm and βij ∈ R as

cij (y) =

{
i αTijy ≤ βij
j αTijy > βij

(7)

if i < j and cij (y) = cji (y) ∀y otherwise. By approximating
y as a normal distributed random variable, αTijy given topology
Ti becomes a one dimensional normal distributed random
variable with mean αTijµi and variance of αTijΛiαij . In this
case the bound in (6) becomes

1−max
i

∑
j

eiji , eiji
.
= 1− Γ

(
βij ;α

T
ijµi, α

T
ijΛiαij

)
(8)

where by convention, αij = −αji, βij = −βji ∀i, j,
and Γ

(
x;µ, σ2

)
is the one-dimensional normal cumulative

distribution function with mean µ and variance σ2. Having
reduced to one-dimensional normal distribution, regardless of
the dimension of y, allows us not only to quickly calculate (8).
In contrast to (2) which can only minimizes the cost function∑
i ẽi, using (7) we have more freedom in choosing the cost

function. In particular we can minimize maxi ẽi over all the
α’s and β’s using constrained nonlinear minimization where
the gradients of the cost function and all the constraints have
explicit analytic expressions. However, because the maximum
likelihood function (2) is not in the family of functions defined
by (7) and (5), it is possible, and indeed we found this to be
the case, that using (2) will still result in a lower maxi ẽi than
have we used this alternative approach.

To demonstrate how to minimize maxi ẽi over α’s and β,
consider we only have two topologies to distinguish between,
i and j. Minimizing max {ei, ej} can be cast as an analytic
nonlinear constrained optimization over m+ 2 variables:

minimize e+
1

4

(
‖αij‖2 − 1

)2
subject to e > 1− Γ

(
βij ;α

T
ijµi, α

T
ijΛiαij

)
e > Γ

(
βij ;α

T
ijµj , α

T
ijΛjαij

)
. (9)

One can use for example MATLAB’s fmincon function to
solve for (9) using the sequential quadratic programming
method (SQP) [8, Chapter 18]. For this function to run
efficiently, we need to supply it with the derivatives of the cost
function and the constraints with respect to all the variables.
These are listed below:

∂ 1
4

(
‖α‖2 − 1

)2
∂α

=
(
‖α‖2 − 1

)
αT ,

∂Γ
(
β;αTµ, αTΛα

)
∂β

= ρ
(
β;αTµ, αTΛα

)
,

∂Γ
(
β;αTµ, αTΛα

)
∂α

=

ρ
(
β;αTµ, αTΛα

)(
−µT − β − αTµ

αTΛα
αTΛ

)
.

This approach follows closely that of support vector ma-
chine (SVM) [9]. A traditional SVM approach to our problem
would proceed as follows. Generate s random power injection
profiles based on µz and Λz . For each such profile, solve the
nonlinear power flow calculation and find the measurement
vector values. Then run the standard SVM between each two
pair of topologies to best separate between the measurement
points belonging to each topology.

The main advantage of the traditional SVM is that by
working on the measurements derived from the nonlinear
power flow calculation, there is no need to revert to lineariza-
tion approximation. However, there are two disadvantages to
the traditional SVM. The first is that for the results to be
reliable, s must be very large. And while nonlinear power flow
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Fig. 1. Examples of a two bus system power flow measurements distribution

calculation can be evaluated quite fast, its computation time is
not negligible, and when the time for a single calculation needs
to be multiplied by s and by the number of topologies, it can
come to a total computation time which is very substantial. In
contrast in the approach described above only one power flow
calculation per topology is needed. The second disadvantage
is that ideally SVM would have minimized the number of
misclassified points from each topology, which is a good proxy
for the confidence level when s is large enough. However,
SVM does not do that but rather minimize the distance from
the support vector to the misclassified point which is the
farthest away from the support vector. This will not necessarily
lead to maximizing the confidence level, as there can still be
many misclassified points.

The following example may explain why using the maxi-
mum likelihood will provide better results then the alternative
approach. The support vector is good in separating distribu-
tions which are centered around distant means. Consider a
system with two buses. One is the slack bus, and the other
is connected to a consumer load. There is one power flow
sensor on the circuit breaker connecting the two buses. In
Figure 1a we show the probability density function of the
sensor reading corresponding to the two possible topologies
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Fig. 2. IEEE PES 123-bus feeder test case. The numbers are the buses
indices. Cyan continuous lines are regular transmission lines with impedance.
Red dashed lines are where the circuit breakers are. Black dashed lines are
where the power flow sensors are placed. Bus 117 at the bottom left corner
is the slack bus.

TABLE I
ERROR RATE FOR EACH BREAKER: THE PROBABILITY THAT THE

ALGORITHM WILL DECIDE THAT ANOTHER BREAKER CHANGED ITS
POSITION, WHEN IN FACT IT WAS THE BREAKER LISTED THAT HAD
CHANGED ITS POSITION. THE LETTER IN BRACKETS IN THE FIRST

COLUMN REPRESENTS THE PHASE.

breaker approximated
error rate (%)

non-
approximated
error rate (%)

nominal 4.5 4
13-119 (a) < 0.1 0
13-119 (b) 0.1 0
13-119 (c) 2.8 5
18-115 (a) 2.3 0
18-115 (b) < 0.1 1
18-115 (c) 1.0 1
60-120 (a) < 0.1 0
60-120 (b) 0.6 2
60-120 (c) 7.2 5
97-121 (a) < 0.1 0
97-121 (b) 0.6 1
97-121 (c) 1.4 2
117-116 (a) < 0.1 0
117-116 (b) < 0.1 0
117-116 (c) < 0.1 0
118-123 (a) < 0.1 0
118-123 (b) < 0.1 0
118-123 (c) < 0.1 0

54-94 (a) < 0.1 0

where in the first the circuit breaker is closed and in the
second it is open. It is easy to see how we can get very
good separation by placing the support vector just right of
the peak corresponding to the second topology. Now consider
that a distributed energy source (DER) such as photo-voltaic
receptor is added to the second bus, and that on average the
DER produces as much power as the consumer demands.
The probability density functions corresponding to the two
topologies are shown in 1b. Using the maximum likelihood
approach would still wield high confidence even for the second
case with DER, but with the support vector approach one
cannot get above 50% confidence for both topologies using
one support vector.

V. RESULTS

We tested this approach using the IEEE PES 123-bus feeder
distribution test case [10], depicted in Figure 2, which is a 3-
phase system. There are 7 pairs of buses connected with circuit
breakers. Between buses 54 and 94 there is only one breaker
on phase a. All other pairs of buses with circuit breakers have
breakers on all 3 phases. The breakers connecting buses 119
and 123 in the top right corner, and the breaker connecting
buses 54 and 94 in the middle bottom, are nominally open.
All other breakers are nominally closed. The test case includes
real and reactive load values at every bus. We took these values
as mean power extraction. We divided these values by 2 and
used that as the standard deviation of the power extraction.

We added 9 real power flow sensors where the dashed lines
are shown in Figure 2: 3-phase measurements next to the
substation (bus no. 117), 3-phase measurements between bus
121 and bus 101, 1-phase measurement (phase a) between bus



57 and bus 60, and 2-phase measurements (phases b and c)
between bus 13 and 18. The decision on where to place the
sensor was based on manual trial and error. We then used our
approach to find the confidence level of identifying whether
any of the breakers changed from its nominal position. We
assumed that only one breaker may have changed its position.
The results, using 1,000 samples drawn for each topology
according to y ∼ N (µi,Λi), are listed in Table I. The results
show a confidence level of 92.8%. We then compared our
approximated confidence level to empirical evidence using
Monte Carlo simulations without the linear approximation.
We randomly generated power injection profiles according to
z ∼ N (µz,Λz). For each breaker, we created the topology
with this breaker changed from its nominal position, performed
the nonlinear power flow calculation, derived the sensor read-
ings, and checked whether our approach concludes that this
was the breaker that changed position. The results are very
close to our approximated values. Due to the much longer
running time, arising from the power flow calculations, we
only generated 100 samples per topology. And despite having
10 times less samples, the total running time was still about
10 times longer. This explains the coarseness of the results in
the right column.

VI. CONCLUSIONS

We addressed here the issue of topology identification in
distribution networks using as few measurements as possible.
While not providing an automatic tool for optimal sensor
placement, we proposed a tool for fast and reliable comparison
between different sensor placements, thus allowing to find an
optimal placement through trial and error. Results from an
IEEE PES distribution feeder test case show the potential
of our proposed tool. Extensions for this tool include the
possibility to distinguish between topologies involving several
circuit breakers changing their status simultaneously, and with-
out having the running time increase exponentially. Another
extension is an automatic tool for optimal sensor placement
based on our proposed tool.
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