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Abstract— We show that a switched system generated by a
pair of globally asymptotically stable nonlinear vector fields,
which span a third-order nilpotent Lie algebra, is globally
asymptotically stable under arbitrary switching. This gener-
alizes a known fact for switched linear systems and provides a
partial solution to the open problem posed in [1]. To prove the
result, we consider an optimal control problem which consists
of finding the “most unstable” trajectory for an associated
control system. We use the Agrachev-Gamkrelidze second-
order maximum principle to show that there always exists an
optimal control that is piecewise constant with no more than
four switches. This property is obtained as a special case of
a reachability result by piecewise constant controls that is of
independent interest. By construction, our criterion also holds
for the more general case of differential inclusions.

Keywords: Switched nonlinear system, global asymptotic sta-
bility, Lie bracket, optimal control, maximum principle, differ-
ential inclusion.

I. INTRODUCTION
Consider the differential inclusion (DI)

ẋ ∈ co{f0(x), f1(x)} (1)

where f0,f1 : Rn → Rn are two analytic vector fields
and co denotes the convex hull. A solution of (1) is an
absolutely continuous function x(·) : R→ Rn satisfying (1)
for (almost) all t. In particular, the set of solutions of (1)
includes all the solutions of the switched system

ẋ = fσ(x), (2)

where σ : [0,∞) → {0, 1} is a piecewise constant function
of time, called a switching signal. Switched systems have
numerous applications and present a subject of extensive
ongoing research (see, e.g., [2]).

An important special case, which we will occasionally use
for illustration, is when the given vector fields are linear:
f i(x) = Aix, with Ai ∈ Rn×n. Then (2) becomes the
switched linear system

ẋ = Aσx. (3)

The DI (1) is called globally asymptotically stable (GAS)
if there exists a class KL function1 β such that for every
initial condition x(0) every solution of (1) satisfies

|x(t)| ≤ β(|x(0)|, t) ∀ t ≥ 0. (4)
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1Recall that a function α : [0,∞) → [0,∞) is said to be of class K if
it is continuous, strictly increasing, and α(0) = 0. A function β : [0,∞)×
[0,∞) → [0,∞) is said to be of class KL if β(·, t) is of class K for each
fixed t ≥ 0 and β(s, t) decreases to 0 as t →∞ for each fixed s ≥ 0.

If the DI is GAS, then the switched system (2) is globally
asymptotically stable, uniformly over the set of all switching
signals, because solutions of (2) are contained in those of (1).
We then say that (2) is globally uniformly asymptotically
stable (GUAS). Determining a necessary and sufficient con-
dition for GUAS is a formidable challenge. In fact, for the
special case (3) this is equivalent to solving one of the
oldest open problems in the theory of control: the problem
of absolute stability (see, e.g., [3]).

It is well known and easy to demonstrate that global
asymptotic stability of the individual subsystems ẋ = f i(x)
is necessary but not sufficient for GUAS of the switched
system (2). In this paper, we are concerned with the problem
of identifying conditions for the individual subsystems—
apart from the obviously necessary requirement as to their
global asymptotic stability—which guarantee GUAS of (2).
This problem has received considerable attention in the
literature; see [2, Chapter 2] for some available results.

The difficulty in analyzing the stability of (2) is that the
switched system admits an infinite number of solutions for
each initial condition. A natural idea is to try to characterize
the “worst-case” (that is, the “most unstable”) switching
law, and then analyze the behavior of the unique trajectory
produced by this law. This approach led to many important
results in the context of the absolute stability problem [4],
[5]. For the particular case of second-order switched linear
systems, this approach yields an easily verifiable necessary
and sufficient condition for GUAS [6].

Another particularly promising research avenue is to ex-
plore the role of commutation relations among the subsys-
tems being switched. We now briefly review available results,
starting with the case of the switched linear system (3).
The commutator, or Lie bracket, is defined as [A0, A1] :=
A0A1 −A1A0. We say that the Lie algebra spanned by the
pair A0, A1 is kth-order nilpotent if all iterated Lie brackets
containing k +1 terms vanish, and there exists a Lie bracket
containing k terms that does not vanish. It was shown in [7]
that if the Lie algebra is nilpotent (in fact, solvable) of any
order, then the linear switched system is GUAS (see also [8]).

The nonlinear switched system (2) is much less thoroughly
understood. To tackle the global stability question, one can
try to inspect commutation relations between the nonlinear
vector fields f0, f1. The Lie bracket is now defined as

[f1, f0](x) :=
∂f1(x)

∂x
f0(x)− ∂f0(x)

∂x
f1(x). (5)

We say that the Lie algebra spanned by f0 and f1 is kth-
order nilpotent if all iterated Lie brackets containing k + 1
terms vanish and there exists a Lie bracket containing k



terms that does not vanish. Mancilla-Aguilar [9] proved that
if the Lie algebra is first-order nilpotent (that is, the two
vector fields commute), then global asymptotic stability of
the individual subsystems still implies GUAS of the switched
system (2).

Until very recently, all attempts to formulate global asymp-
totic stability criteria valid beyond the commuting nonlinear
case have been unsuccessful. This is due to the fact that
the methods employed to obtain the corresponding results
for switched linear systems do not seem to apply. These
issues are explained in [1], where this is presented as an
open problem which seems to require an entirely different
approach.

It is a well-known fact that Lie brackets play an essential
role in the Maximum Principle (MP) (see, e.g. [10][11]),
which is an important tool in analyzing the “worst-case”
switching law [4][5]. This suggests that the two approaches
for stability analysis described above are actually related.
Indeed, using a combination of both approaches, it was re-
cently proved that if the Lie algebra is second-order nilpotent
then there always exists a “worst-case” switching law with
no more than two switches [12]. Then GUAS of the switched
system can be deduced from global asymptotic stability
of the individual subsystems. This approach provided the
first stability criterion for switched nonlinear systems that
involves Lie brackets of the individual vector fields but does
not require that these vector fields commute.

In this paper, we extend this approach to the case where the
Lie algebra spanned by f0 and f1 is third-order nilpotent,
that is, [f i, [f j , [fk, f l]]](x) = 0, ∀i, j, k, l ∈ {0, 1}. Our
main result (Theorem 1) is that this property implies that
the DI (1) is GAS. In fact, this follows as a special case
of a more general “reachability with nice controls” result
(Theorem 5) which is of independent interest.

An analysis of the arguments in [12] shows that this
result cannot be derived using the (classical) MP. Hence, we
apply a new approach based on a powerful second-order MP
developed by Agrachev and Gamkrelidze [13] (see also [14]).

II. OPTIMAL CONTROL APPROACH

Our starting point is to rewrite the differential inclusion (1)
as the control system with drift

ẋ = f(x) + g(x)u, u ∈ U (6)

where f(x) := f0(x), g(x) := f1(x) − f0(x) and U is
the set of measurable functions u(·) : R→ [0, 1].

It is obvious that every solution of (6) is also a solution
of (1). It follows from Filippov’s Selection Lemma (see,
e.g., [15, Theorem 2.3.13]) that every solution of (1) is
also a solution of (6). Thus, the set of solutions of the
control system (6) coincides with the set of solutions of the
differential inclusion (1).

Note that trajectories of the switched system (2) corre-
spond to piecewise constant controls taking values in {0, 1}.
In particular, setting u ≡ 0 [u ≡ 1] in (6) yields ẋ = f0(x)
[ẋ = f1(x)]. We also remark that the switched linear

system (3) is associated in this way with the bilinear control
system ẋ = A0x + (A1 −A0)xu.

Fix an arbitrary point p ∈ Rn, and let x(·; p, u) denote
the solution of the system (6) with initial condition x(0) = p
corresponding to a control u ∈ U . Since the right-hand side
of (6) is bounded on every bounded ball in Rn, there exists
a largest time Tmax ∈ (0,∞] (that depends on |p|) such
that x(·; p, u) is well defined for all u ∈ U and all t ∈
[0, Tmax). Picking a positive final time tf < Tmax, we define

J(tf ,p, u) := |x(tf ; p, u)|2,
and pose the following optimal control problem.

Problem 1: Find a control u ∈ U that maximizes J along
the solutions of (6).

It follows from [16, §7, Theorem 3] that this problem is
well posed, i.e., an optimal control u∗ does exist.

The intuitive interpretation of Problem 1 is clear: find
a control that “pushes” the corresponding trajectory x∗ as
far away from the origin as possible (from a given initial
condition in a given amount of time). If we can show that x∗

satisfies the bound (4), then the same will be true for any
other trajectory of the DI, and stability of the DI—as well
as the switched system—will be established.

III. MAIN RESULT

For τ, k > 0 we let PC(τ, k) ⊂ U denote the set
of piecewise constant controls that have no more than k
switches over the interval [0, τ ]. We are now ready to state
our main result.

Theorem 1: Consider Problem 1 with x(0) = p and tf <
Tmax(p). If {f0,f1}LA is third-order nilpotent then there
exists an optimal control u∗ that satisfies u∗ ∈ PC(tf , 4).

Note that there is rich literature on conditions guaranteeing
that optimal controls are, in some sense, regular;2 see e.g.
[17][18] and the references therein. However, many of these
results are local. That is, they guarantee that there exists a
(sufficiently small) T > 0 such that the restriction of the
optimal control to the interval [0, T ] is regular. In contrast,
our result is global, as the bound on the number of switches
does not depend on tf .

The next result will allow us to apply Theorem 1 to the
stability analysis of (1). Loosely speaking, it states that to
obtain instability in a DI, composed of GAS subsystems, we
must never stop switching.

Proposition 1: Suppose that: (1) for any fixed c ∈ [0, 1]
the system ẋ = hc(x) is GAS; and (2) there exists a finite
integer d such that for any tf < Tmax there exist an optimal
control u∗ ∈ PC(tf , d). Then the DI (1) is GAS.

proof. See [12, §4].
Combining Theorem 1 and Proposition 1 yields:
Corollary 1: Suppose that: (1) for any fixed c ∈ [0, 1] the

system ẋ = f(x) + cg(x) is GAS; and (2) {f0, f1}LA

is third-order nilpotent. Then the DI (1) is globally asymp-
totically stable, and in particular the switched system (2) is
GUAS.

2e.g., a finite combination of bang-bang and singular arcs.



The remainder of this paper is devoted to the proof of
Theorem 1. We first consider the case where u∗ is bang-
bang and then consider the singular case.

IV. THE BANG-BANG CASE

The next result follows from applying the MP to Problem 1
We use the notation Df := ∂f

∂x .
Theorem 2: Let u∗ be an optimal control for Problem 1.

Define the costate λ : [0, tf ] → Rn by

λ̇ = − (Df(x∗) + u∗Dg(x∗))T
λ, λ(tf ) = x∗(tf ),

(7)
and let ϕ(t) := λT (t)g(x∗(t)). Then

u∗(t) =

{
1 if ϕ(t) > 0
0 if ϕ(t) < 0.

(8)

In this section, we assume that ϕ(t) = 0 holds only for
isolated points, so any optimal control u∗ must be bang-bang.

A. First-order analysis

The next result will be used in the sequel. For easy
reference, we state it formally.

Fact 1: If h : Rn → Rn is a smooth vector field, and

ψ(t) := λT (t)h(x(t)), (9)

then
ψ̇(t) = λT (t)([h,f ] + u(t)[h, g])(x(t)). (10)

Proof: Follows immediately from differentiating the
(absolutely continuous) function ψ and using (6), (7) and (5).

The next result relates ϕ(t) to the Lie algebra spanned
by f and g.

Proposition 2: Suppose that the Lie algebra spanned by
the vector fields f and g is kth-order nilpotent for some
integer k > 0. If I ⊆ [0, tf ] is an interval such that u∗(t) ≡ c
for all t ∈ I , then the restriction of ϕ(t) to I is a polynomial
in t with degree < k.

Proof: It follows from the definition of ϕ and Fact 1
that ϕ̇ = λT [g, f ](x). Differentiating again and again, using
Fact 1, we deduce that ϕ(k) contains iterated Lie brackets
of f and g with k + 1 terms, so ϕ(k) ≡ 0 on I . Using
the absolute continuity of ϕ (and its derivatives) on I we
conclude that the restriction of ϕ(t) to I is a polynomial
in t with degree < k.

Proposition 2 implies that if u∗ is piecewise constant, then
the corresponding ϕ(t) is piecewise polynomial in t, and
every polynomial has a degree < k. This result is closely
related to the fact that control systems with a nilpotent Lie
algebra can be represented using a differential equation with
polynomial vector fields [19].

Proposition 3: If the Lie algebra spanned by f and g is
third-order nilpotent, and ϕ(t) = 0 holds only on isolated
points, then u∗ is bang-bang and either: (1) u∗ is periodic; or
(2) u∗ contains no more than two switches for all tf < Tmax.

Proof: It is sufficient to prove that any bang-bang
control u∗ with more than two switches is periodic. Thus,
suppose that u∗ has switches at times τ1 < τ2 < τ3. We

assume, without loss of generality, that τ1 > 0, τ3 < tf , and
that u∗(t) = 0 for t ∈ [0, τ1).

Differentiating ϕ and applying Fact 1 yields

ϕ̇(t) = a(t), ϕ̈(t) = b + u(t)c, (11)

where

a(t) = λT (t)[g, f ](x∗(t))

b = λT (t)[[g, f ], f ](x∗(t)) (12)

c = λT (t)[[g, f ], g](x∗(t))

(the fact that b and c do not depend on t is an immediate
consequence of Fact 1 and the absolute continuity of x∗(t)
and λ(t)). Note that (12) implies that ϕ̇ is absolutely
continuous.

Let ϕi(t) denote the restriction of the absolutely con-
tinuous function ϕ on the interval [τi, τi+1). Combining
Proposition 2 with the fact that ϕ must vanish on the
switching points yields ϕi = pi(t − τi)(t − τi+1), for
some pi ∈ R, so ϕ̇i(t) = pi(2t − τi − τi+1). This implies
that ϕ̇i(τi+1) = −ϕ̇i(τi), so a(τ3) = −a(τ2) = a(τ1).

It now follows from (11) that ϕ(j)(τ1) = ϕ(j)(τ3) for j =
0, 1, 2. Since ϕ is composed of second-order polynomials this
implies that ϕ is periodic. Eq. (8) implies that u∗ is periodic.

The analysis based on the classical, first-order, MP pro-
vides considerable information on u∗. However, the fact
that u∗ might be periodic implies that the number of switches
can increase as a function of tf .

B. Second-order analysis

In this section, we apply a second-order MP [13] to prove
that in the non-singular case, any bang-bang control with
more than three switches is not optimal. To make this paper
self-contained, we provide an independent proof for our
particular case. Due to space limitations, and to make the
proof more transparent, from here on we consider the special
case of linear vector fields: f0(x) = Ax and f1(x) = Bx.
The generalization to the nonlinear case is not difficult, as
all the tools that we use hold for nonlinear vector fields as
well.

Assume that there exits an optimal control u∗ with exactly
four switches 0 < τ1 < τ2 < τ3 < τ4 < tf . Without loss
of generality, we assume that u∗(t) = 0 on t ∈ [0, τ1). For
notational convenience, we define τ0 := 0 and τ5 := tf (note,
however, that these are not switching points). Then x∗(tf ) =
exp(Aq5) exp(Bq4) exp(Aq3) exp(Bq2) exp(Aq1)p,
where qi := τi − τi−1.

We define a set S5 ⊂ R5 by

S5 := {α = (α0, . . . , α4)T :
4∑

i=0

αi = 0}. (13)

For α ∈ S5 and s > 0 we define a new control ũ(t; α, s) by
perturbing the switching times of u∗ to τ̃i := τi+s

∑i−1
k=0 αi,

i = 1, 2, . . . , 5. In other words, ũ(t) = 0 for t ∈ [0, τ̃1),
ũ(t) = 1 for t ∈ [τ̃1, τ̃2), and so on. Note that (13) implies
that τ̃5 = τ5 = tf , that is, the final time is not changed.



It is clear that for any α, there exists a sufficiently
small s0 > 0 such that ũ(s, α) ∈ U for all s ∈ [0, s0].
In other words, ũ(s,α) is an admissible control for all
sufficiently small s. The corresponding trajectory satisfies

x̃(tf ; s, α) = (14)
exp(Aq̃5) exp(Bq̃4) exp(Aq̃3) exp(Bq̃2) exp(Aq̃1)p,

where q̃i := τ̃i − τ̃i−1 = qi + sαi−1.
It is easy to verify that

x̃(tf ; s, α)− x∗(tf ) = exp(Aq5) exp(Bq4)
× exp(Aq3) exp(Bq2)V (s,α) exp(Aq1)p, (15)

where

V (s,α) := exp(−Bq2) exp(−Aq3) exp(−Bq4) exp(Asα4)
× exp(Bq̃4) exp(Aq̃3) exp(Bq̃2) exp(Asα0)− I. (16)

Note that V (0,α) = 0. Using the definition of the
costate (7), we get

(x∗(tf ))T (x̃(tf ; s,α)− x∗(tf ))

= λT (tf )(x̃(tf ; s, α)− x∗(tf ))

= λT (τ1)V (s, α)x∗(τ1). (17)

This yields the following necessary condition for the opti-
mality of u∗.

Proposition 4: If u∗ is optimal then

lim
s→0+

1
s
λT (τ1)V (s, α)x∗(τ1) ≤ 0, ∀α ∈ S5. (18)

Proof: Seeking a contradiction, assume that (18)
does not hold for some α0 ∈ S5. This implies
that there exists s0 > 0 such that ũ(s0,α

0) ∈ U
and λT (τ1)V (s0,α

0)x∗(τ1) > 0. Using (17) yields
(x∗(tf ))T (x̃(tf ; s0, α

0) − x∗(tf )) > 0. However, this im-
plies that |x̃(tf ; s0, α

0)|2 > |x∗(tf )|2 and this contradicts
the optimality of u∗.

To apply Proposition 4, we will expand V (s,α)x∗(τ1) as
a Taylor series about s = 0:

V (s, α)x∗(τ1) = sV1(α)x∗(τ1) + s2V2(α)x∗(τ1) + o(s2),

where o(ε) denotes terms that satisfy limε→0
o(ε)

ε = 0.
Theorem 3: Denote:

H0 := A,

H1 := B,

H2 := exp(−Bq2)A exp(Bq2),
H3 := exp(−Bq2) exp(−Aq3)B exp(Aq3) exp(Bq2),
H4 := exp(−Bq2) exp(−Aq3) exp(−Bq4)A

× exp(Bq4) exp(Aq3) exp(Bq2).

Then

V1(α)x∗(τ1) =
4∑

i=0

αiHix
∗(τ1). (19)

Furthermore, for any

α ∈ S5
0 := {α ∈ S5 :

4∑

i=0

αiHix
∗(τ1) = 0}

we have

V2(α)x∗(τ1) =
4∑

i=0

4∑

j=i+1

αiαj [Hj ,Hi]x∗(τ1), (20)

and if u∗ is optimal then

λT (τ1)V2(α)x∗(τ1) ≤ 0, ∀α ∈ S5
0 . (21)

Proof: Eqs. (19) and (20) follow directly from the
definition of V (16). The proof of (21) is similar to the proof
of Proposition 4.

Theorem 3 is the Agrachev-Gamkrelidze MP specialized
for our problem. It is important to note that the expression
for V2(α)x∗(τ1) in (20) is true only for α ∈ S5

0 , that is,
when V1(α)x∗(τ1) vanishes. This makes (20) meaningful
even in a coordinate-free setting (see [14] for more details).

Combining Proposition 4 and (19) yields

λT (τ1)(
4∑

i=0

αiHi)x∗(τ1) ≤ 0, ∀α ∈ S5, (22)

and noting that if α ∈ S5 then −α ∈ S5 immediately yields
the following.

Proposition 5: If the bang-bang control u∗ is optimal then

λT (τ1)(
4∑

i=0

αiHi)x∗(τ1) = 0, ∀α ∈ S5. (23)

To proceed, we use the nilpotency assumption, combined
with the celebrated Baker-Campbell-Hausdorff (BCH) for-
mula, to simplify the His and their Lie brackets.

Theorem 4: (BCH)

exp(At)B exp(−At) = B + [A,B]t + [A, [A,B]]
t2

2!
+ . . . .

Note that this result can be considered as a particular case
of the pullback formula (see, e.g., [20, Appendix I]), which
provides a similar expansion for the case of nonlinear vector
fields.

Denote C := [B, A], D := [B, [B, A]], and E :=
[A, [B, A]]. Using Theorem 4, and the fact that Lie brackets
involving four (or more) terms of A and B vanish, we get

H2 = A− q2C +
1
2
q2
2D

H3 = B + q3C − q2q3D − 1
2
q2
3E (24)

H4 = H2 − q4C + q4(q2 +
1
2
q4)D + q3q4E.

Proposition 6: Let α0 := (q3, 2q2, 0,−2q2,−q3)T ∈ S5.
Then α0 ∈ S5

0 and λT (τ1)V2(α0)x∗(τ1) > 0.
Proof: It follows from the proof of Proposition 3

that q4 = q2. Using this and (24), we get
∑4

i=0 α0
i Hi = 0,

so α0 ∈ S5
0 .

Eqs. (20) and (24) yield

V2(α0)x∗(τ1) =
4∑

i=0

4∑

j=i+1

α0
i α

0
j [Hj ,Hi]x∗(τ1)

= 2q2q3(q3E + 2q2D)x∗(τ1). (25)



To simplify this expression, let α1 :=
(q3, q2,−q3,−q2, 0)T ∈ S5, then

∑4
i=0 α1

i Hi =
1
2q2q3(q2D + q3E). Proposition 5 yields

λT (τ1)(q2D + q3E)x∗(τ1) = 0

and substituting this in (25), we get

λT (τ1)V2(α0)x∗(τ1) = 2q2
2q3λ

T (τ1)Dx∗(τ1). (26)

Arguing as in the proof of Proposition 3, we find
that ϕ1(t) = p1(t−τ1)(t−τ2). Using the fact that u∗(t) = 1
for t ∈ [τ1, τ2), and our non-singularity assumption, we see
that p1 < 0, so ϕ̈1(t) = 2p1 < 0.

On the other hand, ϕ̈1(t) = −λT (τ1)Dx∗(τ1),
Thus, λT (τ1)Dx∗(τ1) > 0, and this completes the proof.

Combining Proposition 6 and Theorem 3, we conclude
that in the non-singular case, any bang-bang control with
exactly four switches is not optimal. It is easy to see that
this implies that in this case u∗ is bang-bang with no more
than three switches for all tf < Tmax.

V. THE SINGULAR CASE

We now consider the possibility that there exists an
interval of time I ⊆ [0, tf ] such that ϕ(t) ≡ 0 on I . It
follows from (11) that a(t) = b + u(t)c = 0 on I . If c 6= 0,
then this equation uniquely determines u∗ along the singular
arc. If c = 0, then the MP provides no information on u∗.
We now consider these cases in detail.

A. CASE 1: c 6= 0

In this case, u∗(t) ≡ −b/c on I . Of course, this is
possible only if −b/c ∈ [0, 1]. Now suppose that u∗

contains a combination of singular and bang-bang arcs.
Say, u∗(t) = −b/c for t ∈ [τi, τi+1) and ϕ(t) 6= 0 for t ∈
(τi+1, τi+2). In this case, ϕi+1 (that is, the restriction of ϕ
over the interval [τi+1, τi+2]) is a second-order polynomial
and, since ϕ(τi+1) = ϕ̇(τi+1) = 0, we get that ϕi+1(t) =
p(t − τi+1)2, for some p ∈ R. This implies that ϕ(t) 6= 0
for all t > τi+1, so τi+2 = tf . Similarly, if there is a
bang-bang arc preceding the singular arc, say, u∗(t) = 0
for t ∈ [τi−1, τi) then we must have τi−1 = 0. Thus, the most
general configuration possible is a bang-bang arc, followed
by a singular arc (on which u∗ is constant), and another
bang-bang arc. Hence, u∗ ∈ PC(tf , 2).

It is interesting to note that in the second-order nilpotent
case there always exists an optimal control that is bang-
bang [12]. It is possible to show that this is not longer true
in the third-order nilpotent case.

B. CASE 2: c = 0

In this case, (12) yields

λT (t)P (x∗(t)) = 0, ∀t ∈ I (27)

where P is the matrix defined by

P (x) := (g, [g, f ], [[g,f ],f ], [[g, f ], g])(x) (28)

The MP provides no information on the optimal control.
To overcome this problem, we will use a construction due
to Sussmann [21].

Let Φf (t,p) denote the solution at time t of the
system ż(t) = f(z(t)), with z(0) = p. De-
fine y(t) := Φf (−t,x(t)) (where x(t) is the solution of (6)).
Then y(0) = x(0) and

ẏ(t) = u(t) (DΦf (t, y(t)))−1
g (Φf (t,y(t))) . (29)

Consider the control system (6). For an admissible con-
trol u, let p := x(0) and q := x(tf ). We then say that u
steers x from p to q in time tf . It follows from the definition
of y that u steers y from y(0) = p to q′ := Φf (−tf , q) in
time tf .

Consider the problem of finding an admissible control that
steers y from p to q′ in minimum time. Such a control exists
and we denote it by w∗. Then w∗ steers y from p to q′ in
some time t̄ ≤ tf . Hence, w∗ steers x from p to x(t̄) =
Φf (t̄, q′) = Φf (t̄, Φf (−tf , q)) = Φf (t̄ − tf , q) at time t̄.
This implies that the control

v(t) :=

{
w∗(t), t ∈ [0, t̄)
0, t ∈ [t̄, tf ]

(30)

steers x from p to q in time tf . Summarizing, we can replace
any control that steers p to q at time tf , with another control,
in the form (30), that does the same.

The analysis of the time-optimal control problem for (29)
turns out to be similar to the analysis performed above for
Problem 1. In particular, it is possible to prove the following
result.

Proposition 7: w∗ ∈ PC(t̄, 3).
Proof: See the appendix.

Combining this with (30), yields the following reachability
result:

Theorem 5: Suppose that the conditions of Theorem 1
hold. If there exist p, q ∈ Rn and a control u ∈ U that
steers x from p to q in some time t ≥ 0, then there exists
an admissible control v ∈ PC(t, 4) that also steers x from p
to q in time t.

It is obvious that Theorem 1 is a corollary of this result,
so this completes the proof of Theorem 1.

Note that Theorem 5 has an important practical appli-
cation. It implies that any point-to-point control problem
is reduced to the problem of determining a (small) set of
parameters: four switching times and five control values.
Of course, the analysis above shows that in many cases the
number of unknown parameters is even smaller.

VI. CONCLUSIONS
We studied an optimal control problem for nonlinear

differential inclusions and switched systems. We proved that
if the vector fields that generate the differential inclusion
span a third-order nilpotent Lie algebra, then a piecewise
constant optimal control, with no more than four switches
over any interval of time, always exists (Theorem 1). This
result is a particular case of a more general reachability result
(Theorem 5).



This implies that if, in addition, the vector fields are GAS,
then so is the differential inclusion (Corollary 1). This is
a promising step toward a solution of the open problem
described in [1].
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APPENDIX

We denote by (ad f)r, r = 0, 1, . . . the operators defined
by (adf)0(g) := g and (adf)r(g) := [f , (adf)r−1(g)]
for r ≥ 1, where f and g are smooth vector fields on Rn.

It follows from the pullback formula (see, e.g., [20,
Appendix I]), and our nilpotency assumption that (29) can
be written as

ẏ(t) = u(t)
2∑

v=0

(−t)v

v!
(ad f)v(g)(y(t)). (31)

This is a time-varying system, and we apply the standard
trick of defining a new state-variable yn+1 by ẏn+1 = 1,
with yn+1(0) = 0, and augmenting it to the vector y(t).
For ease of notation, we denote the augmented vector also
by y(t). Then we can write (31) as

ẏ(t) = fy(y(t)) + u(t)gy(y(t)), y(0) = (xT (0) 0)T .
(32)

It is easy to verify that {fy, gy}LA is also third-order
nilpotent. Thus, the analysis of the time-optimal control
for (32) is similar to our analysis of (6) above. In particular,
the switching function defined in the MP (for time-optimal
controls) is composed of second-order polynomials.

We now present an outline of the analysis for the time-
optimal control w∗.

A. The bang-bang case

In the non-singular case, w∗ is bang-bang, and it follows
from the MP that it either contains two switchings or is
periodic.

The second-order MP, as described in [14], is defined for
a control yielding a trajectory that is on the boundary of the
reachable set. However, if y∗ is a minimum time trajectory,
then y∗(t̄) must lie on the boundary of the reachable set at
time t̄, so the Agrachev-Gamkrelidze MP can be applied to
our problem.

The proof in [14] requires that the adjoint λ is unique (up
to multiplication by a scalar). This is used to show that if
condition (21) does not hold, then y∗(t̄) is in the interior of
the reachable set at time t̄ so w∗ cannot be optimal.

However, in the proof of Proposition 6, we found a
perturbation α0, that does not depend on λ. A careful
analysis of the proof in [14] shows that in this case the
uniqueness of λ is not required.

B. The singular case
From the MP (defined for the time-optimal problem) it

follows that there exists an adjoint that is non-trivial on the
tangent space of the manifold spanned by the system, and
satisfies λn+1(t) ≡ 0. In the special case of the y system,
this implies that the condition (27) cannot hold [21] so c 6= 0.
Hence, as above, w∗ ∈ PC(t̄, 2).

Summarizing, the time-optimal control always satis-
fies w∗ ∈ PC(t̄, 3).
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