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Abstract. We study control systems where the output subspace is cov-
ered by a finite set of quantization regions, and the only information
available to a controller is which of the quantization regions currently
contains the system’s output. We assume the dimension of the output
subspace is strictly less than the dimension of the state space. The num-
ber of quantization regions can be as small as 3 per dimension of the
output subspace. We show how to design a controller that stabilizes such
a system, and makes the system robust to an external unknown distur-
bance in the sense that the closed-loop system has the Input-to-State
Stability property. No information about the disturbance is required
to design the controller. Achieving the ISS property for continuous-
time systems with quantized measurements requires a hybrid approach,
and indeed our controller consists of a dynamic, discrete-time observer,
a continuous-time state-feedback stabilizer, and a switching logic that
switches between several modes of operation. Except for some properties
that the observer and the stabilizer must possess, our approach is gen-
eral and not restricted to a specific observer or stabilizer. Examples of
specific observers that possess these properties are included.

1 Introduction

Many tools developed in control theory assume a system where the measure-
ment that enters the controller is either the state of the system (state-feedback)
or some linear transformation of the state (output-feedback). In many practi-
cal applications, however, the measurement available to the controller is only a
quantized version of the aforementioned signals. More specifically, the measure-
ment available to the controller is confined to a finite set of values. While the size
of this finite set of values is assumed to be fixed, we do assume that the mapping
from the output-subspace into this set depends on a few parameters that can be
changed by the controller. This is referred to as dynamic quantization. Quanti-
zation can result from the physical properties of the sensors in the system. For
example a coarse temperature sensor which can only measure “normal”; “too
hot”, or “too low”, but its threshold can be adjusted. Another example is a low

* This work was supported by NSF ECS-0134115 CAR and NSF ECCS-0701676
awards



resolution camera whose orientation and optical zoom can be adjusted. Quanti-
zation can also result from a link with a limited data rate between the sensors
and the controller. The approach in this paper is especially designed for systems
where each sensor is connected, through some limited data rate link, directly to
the controller. In particular this means there is no need for a processing unit on
the “sensor side” to collect the information from all the sensors, and generate a
state estimate from the partial output measurements, before transmitting it to
the controller. Basic references on quantized control include [1], [2] and [3].

Several different notions of stability exist in the literature. We chose the no-
tion of Input-to-State Stability (ISS), first presented in [4] for continuous-time
systems. Roughly speaking, a system is ISS if every state trajectory correspond-
ing to a bounded disturbance remains bounded, and the trajectory eventually
becomes small if the disturbance is small (no matter what the initial state is).
The notion of ISS was extended to discrete-time systems in [5]. Our choice of
ISS as the desired property is natural because we want to have a bounded re-
sponse to arbitrary bounded disturbances. This implies, in particular, that no
information about the disturbance bound is given to the controller.

Recent papers on how to achieve stabilization under quantization include:
[6], [7], [8] and [9] which assume only disturbance-free systems; [10] and [11]
which deal only with disturbances whose bound is known to the controller; [12]
which only requires the controller to know some statistical information about
the disturbance but not its bound; and [13] and [14] in which the controller
does not have any information about the disturbance. Even though in [12] and
[13] the controller does not know the disturbance bound, neither shows ISS
— [12] shows mean square stability in the stochastic setting and [13] shows
stability in probability. The paper [14] does show ISS; however, the approach
in [14] is considerably different from our approach and in particular it does not
guarantee a minimum number of quantization regions or a minimum data rate.
Of the papers that deal with disturbances, only [12] and [13] also deal with the
output-feedback case. However, in contrast to our paper, in these papers it is
assumed that the quantization is applied after a state estimate is constructed
by some observer that has direct access to the measurements. This approach is
arguably less relevant in applications since it does not address the case where
the quantization is due to physical or practical limitations of the sensors (and
not only due to a limited data rate).

The work presented in this paper is built on our recent work [15], which
was the first to show how to achieve ISS under state-quantization and mini-
mum data rate. In the work presented here, we show how to extend that scheme
to output-feedback systems where only the projection of the state into a lower
dimensional subspace is measured (and then quantized). Achieving the ISS prop-
erty for continuous-time systems with quantized measurements requires a hybrid
approach, and indeed our controller consists of a dynamic, discrete-time observer,
a continuous-time state-feedback stabilizer, and a switching logic that switches
between several modes of operation.



The paper is organized as follows. In §2 we define the system and the quan-
tizer. In §3 we give an overview of and the motivation for the three modes of
operation of our controller. In §4 we define a general form of an observer, and then
present the controller that achieves the objectives listed above. Our main result is
presented in that section, and it is followed by a simulation. In §5 we give exam-
ples of specific observers that can be used with our control system. We conclude
in §6. Due to paper length limitations we are unable to include here the proof of
our result. It will appear in the journal version of this work, while in the mean-
time it can be viewed in the appendix of the review version of this paper, which
is available at http://decision.csl.uiuc.edu/~ysharon/hscc08_full.pdf

2 System Definition

The continuous-time dynamical system we are to stabilize is as follows (¢ € Rxo,
ke NuU{0}):

x(t) = Az(t) + Bu(t) + Dw(t)
y(k) = Cx (kTs)  z(k) = Q (y(k); c(k), u(k)) (1)

where & € R"= is the state of the system, u € R™ is the control input that
the control system will need to generate, w € R™ is an unknown disturbance
which is injected to the system and y € R™ is the projection of the state space
into the output subspace which is measured by the sensors. Finally, z € R™
is the information available to the controller. We use T for the time interval
between subsequent measurement. We will refer to each instance in time when
a measurement is taken as a time sample. A, B, D, C are real matrices of
appropriate dimensions. We assume that A and B are a controllable pair and
that A and C are an observable pair.

We use N for the number of quantization regions per observed dimension. It
can be determined by the physical properties of the sensor or from the data rate.
Given N, the data rate required, in bits per time sample, is R = log, (N™v). Our
quantizer, denoted by @, is parameterized by ¢ € R™ and u € R as follows (see
Figure 1 for an illustration):

(-N+1p  z;—c¢ < (=N+2)p
(—N+3)p  (-N+2p<zi—c < (=N+4)u

Qi (x;e,pu) =c¢;+ 0 —p<zi—c; < (2)

(N=3)u  (N—dp<azi—c<(N-2p
(N -1)p (N =2)pu <z —¢.

We will refer to ¢ as the center of the quantizer, and to u as zoom factor. Note
that what will actually be transferred from the quantizer to the observer will
be an index to one of the quantization regions. The observer, which knows the
values of ¢ and p, will use this information to convert the received index to the
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Fig. 1. Illustration of the quantizer for the two-dimensional output subspace, N = 5.
The dashed lines define the boundaries of the quantization regions. The black dots
define where the quantizer estimates the projection of the state to be, given the index
of the quantization region that currently contains the projection.

value of @ as given in (2). The controller sets u, ¢ and p, and the only signal
directly observed by the controller is z. The system model, represented by the
matrices A, B, D, C, is known to the controller.

Adopting the standard ISS notion to the class of hybrid systems that we
design here, we will say that the closed-loop system is ISS if its solution satisfies

lz(O)] < B (|2(0)] 1) + et (),  VE>0 3)

for some Koo-function® 7. and some KL-function? f3,;. See also [16] for a study
of ISS in the framework of impulsive systems.
In this paper we will use the co-norm unless otherwise specified: for vectors,

|z] = |Z|oo = max; |z;|; for matrices, || M|| = maxg % = max; (Z] |Mij|); for
continuous-time signals, |[wl[y, ;.1 = maxiep, 1) [W(t)|, [w]l = [[wll; ) and
for discrete-time signals, [¥llg.. ) = M&%ke sk} 180 oor 1911 = (910, cor-

3 Overview of the Controller Design

Our controller operates in three different modes of operation. The motivation
for each of these modes is given in this section.

A general quantizer may consist of quantization regions of finite size, for
which the estimation error can be bounded, and regions of infinite size, where the

LA function « : [0,00) — [0,00) is said to be of class K if it is continuous, strictly
increasing, and «(0) = 0. A function « : [0,00) — [0, 00) is said to be of class Ko if
it is of class I and also unbounded

2 A function 3 : [0,00) x [0,00) — [0,00) is said to be of class KL if B(-,t) is of class
KC for each fixed t > 0 and (3(s,t) decreases to 0 as t — oo for each fixed s > 0.



estimation error can not be bounded. We will refer to these regions as bounded
and unbounded regions, respectively. Due to the fact that there are only a finite
number of quantization regions to cover the infinite-size R™v output subspace,
only a region of finite size of this subspace can be covered by the bounded re-
gions. The size of this region, however, can be adjusted dynamically by changing
the parameters of the quantizer. We refer to this region which is covered by
only bounded quantization regions as the unsaturated region. Our controller fol-
lows the general framework which was introduced in several previous papers to
achieve disturbance rejection using dynamic quantization. This framework con-
sists of two main modes of operation, generally referred to as a “zoom-in” and
a “zoom-out” mode. During the zoom-out mode the unsaturated region is en-
larged until the measured output is captured in this region and a bound on the
estimation error can be established. This is followed by a switch to the zoom-in
mode. During the zoom-in mode the size of the quantization regions is reduced
in order to have the state estimate converge to the true state. The reduction
of the size of the quantization regions inevitably reduces the size of the unsat-
urated region. As the size of this region is reduced, eventually the unknown
disturbance will drive the measured output outside the unsaturated region. To
regain a bounded estimation error, the controller will switch back to the zoom-
out mode. By switching repeatedly between these two modes, ISS relation can
be established. In this paper we use the name “capture” mode for the zoom-out
mode

In our quantizer there are 2n, unbounded quantization regions. If each sensor
measures only one dimension of the output subspace, then this setting allows for
an independent reading by each sensor. This setting also allows the use of as little
as 3 quantization regions per dimension. To achieve the minimum data-rate, how-
ever, we are required to use the unbounded regions not only to detect saturation
(as is done in previous papers), but also to reduce the estimation error. Consider
for example the case of only 3 quantization regions for each dimension. In this
case there is only one bounded region which can not be used by itself to reduce
the estimation error. This dual use is done by dividing the zoom-in mode into
two modes: a “measurement-update” mode and an “escape-detection” mode. Af-
ter receiving r successive measurements in bounded quantization regions, where
r is the observability index, and assuming there are no disturbances, we are
able to define a containment region in the state space which must contain the
state. We enlarge this region by a constant to accommodate some disturbance. In
the measurement-update mode we cover this containment region using both the
bounded and the unbounded regions of the quantizer. This way we are able to
use the smallest quantization regions, which leads to the fastest reduction in the
estimation error. The “problem” with this mode is that if a strong disturbance
comes in, we will not be able to detect it. Therefore, in the escape-detection mode
we use larger quantization regions, but cover the containment region using only
the bounded regions. Thus, if a strong disturbance does come in, we will be able
to detect it as it will drive the measured output to one of the unbounded regions.

The precise details on how to design to controller are given in the next section.



4 Controller Design

We define the sampled-time versions of A, u and w as:

Ag=exp(TLA),  wa(k)= /0 " exp (A (T — 1)) Bu (KT + 1) dt,

Ts
wy (k) / exp (A (Ts — t)) Dw (KT, + t) dt,
0

so we can write & ((k + 1) Ts) = Aqx (kTs) + uq(k) + wq(k). We assumed that A
and B are a controllable pair, so there exists a control gain K such that A+ BK
is Hurwitz. By construction Ay is full rank, and in general (unless T belongs to
some set of measure zero) the observability of A and C implies that A; and C
are an observable pair. Thus there exists r such that:

cA; C
~ - . CAd —r41
=1 = A; (4)
7 :
c cAL?

has full column rank.

Our controller consists of three elements: an observer which generates a state
estimate; a switching logic which sets the parameters for the quantizer and for the
observer; and a stabilizing control law which computes the control input based
on a state estimate. For simplicity of presentation, we assume the stabilizing
control law is a simple static gain given by K. However, any control law that
will render the closed-loop system ISS with respect to the disturbance and the
estimation error, will work with our controller. Note that it is sufficient for K to
be such that A+ BK is Hurwitz in order to satisfy this ISS requirement. In the
next subsection we present a general structure for an observer, and specify the
properties it is required to satisfy. In subsection 4.2 we present the algorithm for
the switching logic and state our main theorem.

4.1 Desired Observer Properties

The first element in our control system is the observer. The observer is required
to generate an estimate of the state based on current and previous quantized
measurements. We assume that the observer is linear, and that there exists a
sequence of linear gains, Go, G4, ..., Gq_1, d > r, where Gj, € R =*(k+r)ny
such that the state estimate can be written for k € {0...d — 1} as:

2(ko —r 4+ 1)+ C M ATt ug (ko — v 4 4)
Zulko + k) =Gy |
z(ko +k—1)+ CA; 'ug(ko + k — 1)
Z(ko +l€)

Note that we must have at least r successive measurements to generate a state
estimate. Therefore, (5) is defined only for kg > r — 1. We use the subscript



u to indicate that &, (k) is our estimate of x(k) based on measurements up to
z(k). We will later also use the subscript p to indicate that &, (k) is our estimate
of (k) based on measurements up to z(k — 1). The subscripts u and p stand
for update and predict, respectively, which are common notations in the Kalman
filter. We denote the quantization error by e, (k) = z(k) — y(k) and the state
estimation error by e, (k) = &, (k) — x(kT).

The first requirement for our approach to succeed is that the linear gains
Go, G1, ..., G4 are such that if no disturbance is injected into the system, and
eq = 0, then the state estimate is exact: e; = 0. In the presence of estimation
errors, e, # 0, and bounded disturbances, the state estimate cannot be exact,
but we will need it to converge to the true state. This is achieved by having
p(k +d) < p(k). We cannot, however, decrease y arbitrarily, since we need the
quantization regions to cover the projection of the containment region into the
output subspace. The containment region is the region where we expect the state
to be based on previous measurements, and given that the disturbances are small
enough. If at time sample £ — 1 the gain G, was used then at time sample k
the radius (in co-norm) of the projection of this containment region is given
by F (u,k,p) + allpll—pr. k—p1y- F (see (6) below for a precise definiton)
is the radius if there are no disturbances, and « is used as a “slack” for the
disturbance. Note that the only variable on which this radius depends is p, and
the dependence is linear. Thus we can arbitrarily choose the initial values of
in order to verify if we get convergence. The requirement is thus formulated as
follows: there exist & € Ryg and 0 < 1 (0 € Rs¢) such that if we set

(k) =1, ke{0...r—1}
u’(k):F(“’;’“fV_”*a, kelr..d—1} (5)
u’(k)zF(“,;k;k_THa ke{d...d+r—1},

N -2 ’
where

p—1

Fukip) = max 33 |(CAGY), sy, | 1= p+1). (6)
m=1

i€{l..ng} =
then

||N/||ke{d...d+r71} <o. (7)

The first line in (5) corresponds to our arbitrary choice of initial values for pu.
The second and third lines correspond to the minimal possible value for p in
the measurement-update mode and in the escape-detection mode, respectively.
If the observer satisfies this second requirement for some «, we say that it has
the convergence property for this a. Note that if it has this property for some
g then it will have it for all & < ayg. Note also that it is possible to satisfy this
requirement just by increasing N sufficiently.



4.2 Switching Logic

The controller will operate in one of three modes which will be determined
by the switching logic: capture, measurement update or escape detection. The
initial mode will be capture. The current mode will be stored in the variable
mode(k) € {capture,update, detect}. The controller will also use® &, (k) € R",
&, (k) € R, &(t) € R"™, p(k) € Z and saturated € {true, false} as auxiliary
variables. We initialize &,(0) = 0. The initial value of 1(0), the zoom factor
for the quantizer, can be any positive value and it will be regarded as a design
parameter. The controller will also have three other design parameters: o € Ry,
s € Rug, and Qout € R, 20ut > ||All. With a slight abuse of notation we define:

2k—r—p+ 1)+ CX P AT ug(k —r —p+1)
G (z;ug; k;p) =Gy | )

2(k = 1)+ CAT ug(k — 1)
z(k)

At each time sample, k, the following switching logic will be executed:

1 Preliminaries
if mode(k) = capture then
set pur = Qout,ukfl
else if mode(k) = update then

set
F(uk;plk—1)) 4+« —r—p(k—1)...k—1—p(k—
= Fiksp(k — 1)) IIMU\? p(h=1)...k=1—p(h=1)} (8)
else if mode(k) = detect then
set
_ Fpksp(k = 1)) + aflpllgp—r—pte—1).. k= 1-p(k—1)}
fk = N -3 )
end if

have the observer record z(k) = Q (y(k); CZp(k), pr)
if 3i such that z;(k) = (C&,(k)), £ (N — 1)y then
set saturated(k) = true
else
set saturated(k) = false
end if
by default the mode will not change — set mode(k + 1) = mode(k)

3 The distinction between &.,, &, and @ is only to make the proofs easier to read. The
controller can be implemented using just one variable.



2 capture mode

if mode(k) = capture then
if saturated(k) then
set p(k) = 0 and use the observer to update &, (k) = &(k)
else
set p(k) = plk — 1) +1
if p(k) = r then
set p(k) = 0 and use the observer to compute &, (k) = G (z;uq; k;0)
switch to the measurement update mode: set mode(k + 1) = update
else
use the observer to update . (k) = &, (k)
end if
end if
end if

3 measurement update mode

if mode(k) = update then
set p(k) = p(k — 1)+ 1 and use the observer to compute (k) = G (z;uq; k; p(k))
if p(k) =d —r then
switch to the escape detection mode: set mode(k + 1) = detect
end if
end if

4 escape detection mode

if mode(k) = detect then
if not saturated(k) then
set p(k) =pk—1)+1
if p(k) < d then
use the observer to compute &, (k) = G (z;uq; k; p(k))
else
set p(k) = 0 and use the observer to compute &, (k) = G (z;ua; k;0)
switch to the measurement update mode: set mode(k + 1) = update
end if
else
set p(k) = 0, pu(k) = s and use the observer to update &, (k) = &, (k)
switch to capture mode: set mode(k + 1) = capture
end if
end if




Between the time samples the following will be executed:

5 Control input generation
use the observer to update &(kTs) = Zu(k); wa(k) =0
for t € [0,7s) do
use the stabilizing control law to set the control action w(kTs +t) = K& (kTs +t)
use the observer to update:

(kT +t) = AZ(kTs +t) + Bu (KT, + t)
ta(k) = exp (A (Ts — t)) Bu (kTs + t)

end for
use the observer to update &, (k + 1) = limy ~7, & (kTs +t)

We are now ready to state our main result (see the last paragraph in §1 for
a reference to the proof):

Theorem 1 Consider the system (1). If we implement the controller with the
algorithm above, and the observer has the convergence property for the a chosen
for the implementation, then the closed-loop system will be input-to-state stable
with respect to the disturbances.

An illustrative simulation of this controller is given in figure 2.

5 Observer Examples

In §4.1 we gave a somewhat cumbersome definition for an observer. The reason
was to allow for our approach to be implemented with a wide range of observers.
In this section we give two examples of observers for which our definition is valid.

5.1 Pseudo-Inverse Observer
Perhaps the most obvious observer is the pseudo-inverse observer?:

~ ~\ —1 o~
GO:(CTC) CT.  Gi=[0nun, | Gia], Vie{l...d—1} (10)

where C is defined in (4). Since our assumption is that C' has full column rank,
then GoC = I , the identity matrix. Thus if no disturbance is injected into the
system, and there is no quantization error, then indeed the state estimate will
be exact. This satisfies the first requirement from §4.1. A sufficient condition for
this observer to satisfy the second requirement from §4.1 is

o1
Opi = N ||CAdG0|| < 1. (11)

4 Onyxny 18 the zero matrix of dimension n, X ny
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Fig. 2. Simulation of the proposed controller. Simulated here is a two dimensional
dynamical system: @(t) = [0.1, —1;1,0.1] z(t) + [0; 1] u(t) + [1,0; 0, 1] w(¢), where only
the first dimension is observed, y(k) = [0, 1] & (kT%), through a quantizer with N = 3.
The solid line in the left plot is the trajectory of the system (starting at « (0) = [1;0]).
The dotted line in that plot is the state estimate. The dashed-dot lines represent the
jumps in the state estimate after a new measurement is received. The top right plot
shows the first 15 seconds of the measured output (7s = 1s). The vertical dotted
lines depict the only one bounded quantization region. The controller is in the capture
mode where these vertical lines are bounded by arrows facing outward; in the update
mode where the arrows are facing inward; and in the detect mode where the vertical
lines are bounded by small horizontal lines. The bottom right plot shows 15 seconds of
the steady-state behavior of the simulation, where an escape of the trajectory due to
disturbances is detected at ¢ = 119s, and then the trajectory is recaptured at ¢t = 122s.
The pseudo-inverse observer (see §5.1) was used in this simulation. The other design
parameters were: d = 6, 1 (0) = 0.25, 204t = 2, @ = 0.02, s = 0.05, K = [0.6, —1.5].
The disturbances followed the zero-mean normal distribution with standard deviation
of 0.2.



To see that indeed this condition is sufficient note first that from (6):

k—r—1 ny

F(u;k;k—r)= max Z Z

A CERD S e wa e

<< max Z!<CAdGo>i,m\> 1oy = NCAaGol il

i€{l..ng} oo

(CAdG())i,(H»Qrfk)nqum 2 (T + l)

so that
Fkk—r)+a
N

(07

N (12

< Opi HM/kar...kfl +

Assume d is a multiple of 7 and « satisfies 0,; + § < 1 so that V] € N: J;J{l +
Zlm:o oy < 011”- + Z:io oyt With these assumptions, and from (12) we
have by induction that for all { € {1...d/r —1}:

m & .
|W||zr...(z+1)r—1 < Jén' + TN = V() and

m=0
N le’
144y gy < max {2%1/ (d/r =1+ 5
r r—1 m
N N «
(N—20Pi> V(d/rl)+7;(zv—2‘7pi> N—Q}

It can now be easily seen that by taking d to be large enough, and « to be
small enough, we can make ||p'||,_, ,_; < 1 which satisfies the convergence
property.

5.2 Luenberger-Type Observer
Another commonly used observer for unquantized, output feedback systems is
the Luenberger observer:

Z(k+1)=Aqz(k) + uq(k) + L (y(k) — Cz(k)), (13)

where L € R™ X"y ig chosen so that Ay — LC is Schur®. Given that A; and C
are an observable pair, such an L is guaranteed to exist. Since the Luenberger
observer requires some initialization, we can use Gy as in the pseudo-inverse
observer (10). We can then replace in the algorithm all the computations of the
state estimate, &, (k) = G (z;uq; k;p), when p > 0, with

&u(k) = &p(k) + L (z(k — 1) — Cay(k — 1)) .
Using this alternative is equivalent to using
Gi=[%]|(Aa—LC) *L|...|L|Onxn, ], i€{l...d=—1}  (14)

5 All the eigenvalues of a Schur matrix are inside the unit ball on the complex plane.
This is the discrete counterpart to a Hurwitz matrix



where ‘ ‘
¥ = (Ad — LC)Z Go + [Onxx(rfl)ny | (Ad — LC)171 L.

Remark 1. This observer will satisfy the first requirement from §4.1. However,
we have not been able yet to derive an easily verifiable sufficient condition for
the second requirement as we did for the pseudo-inverse observer with (11).
Therefore, to verify that such an observer satisfies the second requirement, one
has to generate the u'’s according to (5) using (14), and then verify that (7)
holds.

Remark 2. The standard formulation for a Luenberger observer is (13). However,
note that when we need to construct &,,(k+ 1), on which the control inputs from
t =(k+1)Ts tot = (k+2)Ts are based, we already have the measurement
z (k4 1). Therefore, instead of (13) it will be better to use

(k+1)=Aqz(k) + uq(k) + L (y(k+ 1) — C (Agz(k) + uq(k))),
which requires that Ay — LC'A, is Schur. With these settings (14) becomes:

Gi = [(Ag— A4LC) Gy | (Ag — A4LC) " L|...|L], ie{l...d—1}.

6 Conclusion

In this paper we showed how to implement a stabilizing controller when only a
partial subspace of the state space is measured, and furthermore the measure-
ments are quantized with a finite number of quantization regions. The controller
is also robust, in the ISS sense, to unknown disturbance which can be injected
to the system. In our design, we allow flexibility in designing the observer and
the stabilizing control law, thus allowing further balancing between ease of im-
plementation and performance.

As mentioned in the introduction, this paper extends the results in [15] from
the state-feedback scenario to the output-feedback scenario. Future develop-
ments will be to extend the results further to systems with delays and nonlinear
systems.
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